ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f11o GIF version

Theorem f11o 5184
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
f11o (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4 𝐹 ∈ V
21ffoss 5183 . . 3 (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
32anbi1i 439 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
4 df-f1 4932 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
5 dff1o3 5157 . . . . . 6 (𝐹:𝐴1-1-onto𝑥 ↔ (𝐹:𝐴onto𝑥 ∧ Fun 𝐹))
65anbi1i 439 . . . . 5 ((𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥 ∧ Fun 𝐹) ∧ 𝑥𝐵))
7 an32 504 . . . . 5 (((𝐹:𝐴onto𝑥 ∧ Fun 𝐹) ∧ 𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
86, 7bitri 177 . . . 4 ((𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
98exbii 1510 . . 3 (∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ∃𝑥((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
10 19.41v 1796 . . 3 (∃𝑥((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
119, 10bitri 177 . 2 (∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
123, 4, 113bitr4i 205 1 (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  wex 1395  wcel 1407  Vcvv 2572  wss 2942  ccnv 4369  Fun wfun 4921  wf 4923  1-1wf1 4924  ontowfo 4925  1-1-ontowf1o 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-un 4195
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-rex 2327  df-v 2574  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-opab 3844  df-cnv 4378  df-dm 4380  df-rn 4381  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934
This theorem is referenced by:  domen  6260
  Copyright terms: Public domain W3C validator