ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dmex GIF version

Theorem f1dmex 6007
Description: If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1dmex ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)

Proof of Theorem f1dmex
StepHypRef Expression
1 f1rn 5324 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
2 ssexg 4062 . . . . 5 ((ran 𝐹𝐵𝐵𝐶) → ran 𝐹 ∈ V)
31, 2sylan 281 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → ran 𝐹 ∈ V)
43ex 114 . . 3 (𝐹:𝐴1-1𝐵 → (𝐵𝐶 → ran 𝐹 ∈ V))
5 f1cnv 5384 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
6 f1ofo 5367 . . . . 5 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹onto𝐴)
75, 6syl 14 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹onto𝐴)
8 fornex 6006 . . . 4 (ran 𝐹 ∈ V → (𝐹:ran 𝐹onto𝐴𝐴 ∈ V))
97, 8syl5com 29 . . 3 (𝐹:𝐴1-1𝐵 → (ran 𝐹 ∈ V → 𝐴 ∈ V))
104, 9syld 45 . 2 (𝐹:𝐴1-1𝐵 → (𝐵𝐶𝐴 ∈ V))
1110imp 123 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  Vcvv 2681  wss 3066  ccnv 4533  ran crn 4535  1-1wf1 5115  ontowfo 5116  1-1-ontowf1o 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126
This theorem is referenced by:  f1domg  6645
  Copyright terms: Public domain W3C validator