Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eqcocnv GIF version

Theorem f1eqcocnv 5482
 Description: Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1eqcocnv ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))

Proof of Theorem f1eqcocnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1cocnv1 5207 . . . 4 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
2 coeq2 4542 . . . . 5 (𝐹 = 𝐺 → (𝐹𝐹) = (𝐹𝐺))
32eqeq1d 2091 . . . 4 (𝐹 = 𝐺 → ((𝐹𝐹) = ( I ↾ 𝐴) ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
41, 3syl5ibcom 153 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐴)))
54adantr 270 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐴)))
6 f1fn 5144 . . . . . . 7 (𝐺:𝐴1-1𝐵𝐺 Fn 𝐴)
76adantl 271 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → 𝐺 Fn 𝐴)
87adantr 270 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐺 Fn 𝐴)
9 f1fn 5144 . . . . . . 7 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
109adantr 270 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
1110adantr 270 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐹 Fn 𝐴)
12 equid 1630 . . . . . . . . . 10 𝑥 = 𝑥
13 resieq 4670 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐴) → (𝑥( I ↾ 𝐴)𝑥𝑥 = 𝑥))
1412, 13mpbiri 166 . . . . . . . . 9 ((𝑥𝐴𝑥𝐴) → 𝑥( I ↾ 𝐴)𝑥)
1514anidms 389 . . . . . . . 8 (𝑥𝐴𝑥( I ↾ 𝐴)𝑥)
1615adantl 271 . . . . . . 7 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → 𝑥( I ↾ 𝐴)𝑥)
17 breq 3807 . . . . . . . 8 ((𝐹𝐺) = ( I ↾ 𝐴) → (𝑥(𝐹𝐺)𝑥𝑥( I ↾ 𝐴)𝑥))
1817ad2antlr 473 . . . . . . 7 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥𝑥( I ↾ 𝐴)𝑥))
1916, 18mpbird 165 . . . . . 6 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → 𝑥(𝐹𝐺)𝑥)
20 vex 2613 . . . . . . . . . 10 𝑥 ∈ V
2120, 20brco 4554 . . . . . . . . 9 (𝑥(𝐹𝐺)𝑥 ↔ ∃𝑦(𝑥𝐺𝑦𝑦𝐹𝑥))
22 fnfun 5047 . . . . . . . . . . . . . . . . 17 (𝐺 Fn 𝐴 → Fun 𝐺)
237, 22syl 14 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → Fun 𝐺)
2423adantr 270 . . . . . . . . . . . . . . 15 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → Fun 𝐺)
25 fndm 5049 . . . . . . . . . . . . . . . . . 18 (𝐺 Fn 𝐴 → dom 𝐺 = 𝐴)
267, 25syl 14 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → dom 𝐺 = 𝐴)
2726eleq2d 2152 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝑥 ∈ dom 𝐺𝑥𝐴))
2827biimpar 291 . . . . . . . . . . . . . . 15 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ dom 𝐺)
29 funopfvb 5269 . . . . . . . . . . . . . . 15 ((Fun 𝐺𝑥 ∈ dom 𝐺) → ((𝐺𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
3024, 28, 29syl2anc 403 . . . . . . . . . . . . . 14 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
3130bicomd 139 . . . . . . . . . . . . 13 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ↔ (𝐺𝑥) = 𝑦))
32 df-br 3806 . . . . . . . . . . . . 13 (𝑥𝐺𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)
33 eqcom 2085 . . . . . . . . . . . . 13 (𝑦 = (𝐺𝑥) ↔ (𝐺𝑥) = 𝑦)
3431, 32, 333bitr4g 221 . . . . . . . . . . . 12 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐺𝑦𝑦 = (𝐺𝑥)))
3534biimpd 142 . . . . . . . . . . 11 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐺𝑦𝑦 = (𝐺𝑥)))
36 fnfun 5047 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝐴 → Fun 𝐹)
3710, 36syl 14 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → Fun 𝐹)
3837adantr 270 . . . . . . . . . . . . . . 15 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → Fun 𝐹)
39 fndm 5049 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
4010, 39syl 14 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
4140eleq2d 2152 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝑥 ∈ dom 𝐹𝑥𝐴))
4241biimpar 291 . . . . . . . . . . . . . . 15 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ dom 𝐹)
43 funopfvb 5269 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
4438, 42, 43syl2anc 403 . . . . . . . . . . . . . 14 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
45 df-br 3806 . . . . . . . . . . . . . 14 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
4644, 45syl6rbbr 197 . . . . . . . . . . . . 13 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐹𝑦 ↔ (𝐹𝑥) = 𝑦))
47 vex 2613 . . . . . . . . . . . . . 14 𝑦 ∈ V
4847, 20brcnv 4566 . . . . . . . . . . . . 13 (𝑦𝐹𝑥𝑥𝐹𝑦)
49 eqcom 2085 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
5046, 48, 493bitr4g 221 . . . . . . . . . . . 12 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑦𝐹𝑥𝑦 = (𝐹𝑥)))
5150biimpd 142 . . . . . . . . . . 11 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑦𝐹𝑥𝑦 = (𝐹𝑥)))
5235, 51anim12d 328 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝑥𝐺𝑦𝑦𝐹𝑥) → (𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
5352eximdv 1803 . . . . . . . . 9 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (∃𝑦(𝑥𝐺𝑦𝑦𝐹𝑥) → ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
5421, 53syl5bi 150 . . . . . . . 8 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥 → ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
556anim1i 333 . . . . . . . . . 10 ((𝐺:𝐴1-1𝐵𝑥𝐴) → (𝐺 Fn 𝐴𝑥𝐴))
5655adantll 460 . . . . . . . . 9 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝐺 Fn 𝐴𝑥𝐴))
57 funfvex 5243 . . . . . . . . . 10 ((Fun 𝐺𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
5857funfni 5050 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑥𝐴) → (𝐺𝑥) ∈ V)
59 eqvincg 2727 . . . . . . . . 9 ((𝐺𝑥) ∈ V → ((𝐺𝑥) = (𝐹𝑥) ↔ ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
6056, 58, 593syl 17 . . . . . . . 8 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥) = (𝐹𝑥) ↔ ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
6154, 60sylibrd 167 . . . . . . 7 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥 → (𝐺𝑥) = (𝐹𝑥)))
6261adantlr 461 . . . . . 6 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥 → (𝐺𝑥) = (𝐹𝑥)))
6319, 62mpd 13 . . . . 5 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹𝑥))
648, 11, 63eqfnfvd 5320 . . . 4 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐺 = 𝐹)
6564eqcomd 2088 . . 3 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐹 = 𝐺)
6665ex 113 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → ((𝐹𝐺) = ( I ↾ 𝐴) → 𝐹 = 𝐺))
675, 66impbid 127 1 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285  ∃wex 1422   ∈ wcel 1434  Vcvv 2610  ⟨cop 3419   class class class wbr 3805   I cid 4071  ◡ccnv 4390  dom cdm 4391   ↾ cres 4393   ∘ ccom 4395  Fun wfun 4946   Fn wfn 4947  –1-1→wf1 4949  ‘cfv 4952 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-sbc 2825  df-csb 2918  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator