ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1finf1o GIF version

Theorem f1finf1o 6828
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
Assertion
Ref Expression
f1finf1o ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 109 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 simplr 519 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐵 ∈ Fin)
3 f1rn 5324 . . . . . 6 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
43adantl 275 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
5 f1fn 5325 . . . . . . . . 9 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
6 fnima 5236 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
75, 6syl 14 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → (𝐹𝐴) = ran 𝐹)
87adantl 275 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹𝐴) = ran 𝐹)
9 ssid 3112 . . . . . . . . 9 𝐴𝐴
109a1i 9 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐴)
11 simpll 518 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
12 enfii 6761 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
132, 11, 12syl2anc 408 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
14 f1imaeng 6679 . . . . . . . 8 ((𝐹:𝐴1-1𝐵𝐴𝐴𝐴 ∈ Fin) → (𝐹𝐴) ≈ 𝐴)
151, 10, 13, 14syl3anc 1216 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹𝐴) ≈ 𝐴)
168, 15eqbrtrrd 3947 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐴)
17 entr 6671 . . . . . 6 ((ran 𝐹𝐴𝐴𝐵) → ran 𝐹𝐵)
1816, 11, 17syl2anc 408 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
19 fisseneq 6813 . . . . 5 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵 ∧ ran 𝐹𝐵) → ran 𝐹 = 𝐵)
202, 4, 18, 19syl3anc 1216 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 = 𝐵)
21 dff1o5 5369 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
221, 20, 21sylanbrc 413 . . 3 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto𝐵)
2322ex 114 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
24 f1of1 5359 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
2523, 24impbid1 141 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wss 3066   class class class wbr 3924  ran crn 4535  cima 4537   Fn wfn 5113  1-1wf1 5115  1-1-ontowf1o 5117  cen 6625  Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1o 6306  df-er 6422  df-en 6628  df-fin 6630
This theorem is referenced by:  iseqf1olemqf1o  10259  crth  11889  pwf1oexmid  13183
  Copyright terms: Public domain W3C validator