ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeng GIF version

Theorem f1oeng 6644
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Assertion
Ref Expression
f1oeng ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)

Proof of Theorem f1oeng
StepHypRef Expression
1 f1ofo 5367 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
2 fornex 6006 . . . 4 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
31, 2syl5 32 . . 3 (𝐴𝐶 → (𝐹:𝐴1-1-onto𝐵𝐵 ∈ V))
43imp 123 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ V)
5 f1oen2g 6642 . . 3 ((𝐴𝐶𝐵 ∈ V ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
653com23 1187 . 2 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵𝐵 ∈ V) → 𝐴𝐵)
74, 6mpd3an3 1316 1 ((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  Vcvv 2681   class class class wbr 3924  ontowfo 5116  1-1-ontowf1o 5117  cen 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-en 6628
This theorem is referenced by:  f1oen  6646  f1imaeng  6679  xpen  6732  fidifsnen  6757  dif1en  6766  f1ofi  6824  f1dmvrnfibi  6825  omp1eom  6973  endjusym  6974  eninl  6975  eninr  6976  summodclem2  11144  zsumdc  11146  pwf1oexmid  13183
  Copyright terms: Public domain W3C validator