ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oprg GIF version

Theorem f1oprg 5411
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oprg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))

Proof of Theorem f1oprg
StepHypRef Expression
1 f1osng 5408 . . . . 5 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
21ad2antrr 479 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1osng 5408 . . . . 5 ((𝐶𝑋𝐷𝑌) → {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷})
43ad2antlr 480 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷})
5 disjsn2 3586 . . . . 5 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
65ad2antrl 481 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐴} ∩ {𝐶}) = ∅)
7 disjsn2 3586 . . . . 5 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
87ad2antll 482 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐵} ∩ {𝐷}) = ∅)
9 f1oun 5387 . . . 4 ((({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ∧ {⟨𝐶, 𝐷⟩}:{𝐶}–1-1-onto→{𝐷}) ∧ (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}))
102, 4, 6, 8, 9syl22anc 1217 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}))
11 df-pr 3534 . . . . . 6 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
1211eqcomi 2143 . . . . 5 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}
1312a1i 9 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
14 df-pr 3534 . . . . . 6 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
1514eqcomi 2143 . . . . 5 ({𝐴} ∪ {𝐶}) = {𝐴, 𝐶}
1615a1i 9 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐴} ∪ {𝐶}) = {𝐴, 𝐶})
17 df-pr 3534 . . . . . 6 {𝐵, 𝐷} = ({𝐵} ∪ {𝐷})
1817eqcomi 2143 . . . . 5 ({𝐵} ∪ {𝐷}) = {𝐵, 𝐷}
1918a1i 9 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → ({𝐵} ∪ {𝐷}) = {𝐵, 𝐷})
2013, 16, 19f1oeq123d 5362 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}):({𝐴} ∪ {𝐶})–1-1-onto→({𝐵} ∪ {𝐷}) ↔ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
2110, 20mpbid 146 . 2 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ (𝐴𝐶𝐵𝐷)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷})
2221ex 114 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wne 2308  cun 3069  cin 3070  c0 3363  {csn 3527  {cpr 3528  cop 3530  1-1-ontowf1o 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator