ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1orescnv GIF version

Theorem f1orescnv 5170
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
f1orescnv ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)

Proof of Theorem f1orescnv
StepHypRef Expression
1 f1ocnv 5167 . . 3 ((𝐹𝑅):𝑅1-1-onto𝑃(𝐹𝑅):𝑃1-1-onto𝑅)
21adantl 266 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅):𝑃1-1-onto𝑅)
3 funcnvres 5000 . . . 4 (Fun 𝐹(𝐹𝑅) = (𝐹 ↾ (𝐹𝑅)))
4 df-ima 4386 . . . . . 6 (𝐹𝑅) = ran (𝐹𝑅)
5 dff1o5 5163 . . . . . . 7 ((𝐹𝑅):𝑅1-1-onto𝑃 ↔ ((𝐹𝑅):𝑅1-1𝑃 ∧ ran (𝐹𝑅) = 𝑃))
65simprbi 264 . . . . . 6 ((𝐹𝑅):𝑅1-1-onto𝑃 → ran (𝐹𝑅) = 𝑃)
74, 6syl5eq 2100 . . . . 5 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹𝑅) = 𝑃)
87reseq2d 4640 . . . 4 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹 ↾ (𝐹𝑅)) = (𝐹𝑃))
93, 8sylan9eq 2108 . . 3 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅) = (𝐹𝑃))
10 f1oeq1 5145 . . 3 ((𝐹𝑅) = (𝐹𝑃) → ((𝐹𝑅):𝑃1-1-onto𝑅 ↔ (𝐹𝑃):𝑃1-1-onto𝑅))
119, 10syl 14 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → ((𝐹𝑅):𝑃1-1-onto𝑅 ↔ (𝐹𝑃):𝑃1-1-onto𝑅))
122, 11mpbid 139 1 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  ccnv 4372  ran crn 4374  cres 4375  cima 4376  Fun wfun 4924  1-1wf1 4927  1-1-ontowf1o 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937
This theorem is referenced by:  f1oresrab  5357
  Copyright terms: Public domain W3C validator