ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fabexg GIF version

Theorem fabexg 5105
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 4480 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
2 pwexg 3961 . 2 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
3 fabexg.1 . . . . 5 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
4 fssxp 5086 . . . . . . . 8 (𝑥:𝐴𝐵𝑥 ⊆ (𝐴 × 𝐵))
5 selpw 3394 . . . . . . . 8 (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵))
64, 5sylibr 141 . . . . . . 7 (𝑥:𝐴𝐵𝑥 ∈ 𝒫 (𝐴 × 𝐵))
76anim1i 327 . . . . . 6 ((𝑥:𝐴𝐵𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑))
87ss2abi 3040 . . . . 5 {𝑥 ∣ (𝑥:𝐴𝐵𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
93, 8eqsstri 3003 . . . 4 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
10 ssab2 3052 . . . 4 {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵)
119, 10sstri 2982 . . 3 𝐹 ⊆ 𝒫 (𝐴 × 𝐵)
12 ssexg 3924 . . 3 ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V)
1311, 12mpan 408 . 2 (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V)
141, 2, 133syl 17 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  {cab 2042  Vcvv 2574  wss 2945  𝒫 cpw 3387   × cxp 4371  wf 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-dm 4383  df-rn 4384  df-fun 4932  df-fn 4933  df-f 4934
This theorem is referenced by:  fabex  5106  f1oabexg  5166
  Copyright terms: Public domain W3C validator