ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd6 GIF version

Theorem faclbnd6 10490
Description: Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
Assertion
Ref Expression
faclbnd6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))

Proof of Theorem faclbnd6
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . 6 (𝑚 = 0 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑0))
21oveq2d 5790 . . . . 5 (𝑚 = 0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑0)))
3 oveq2 5782 . . . . . 6 (𝑚 = 0 → (𝑁 + 𝑚) = (𝑁 + 0))
43fveq2d 5425 . . . . 5 (𝑚 = 0 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 0)))
52, 4breq12d 3942 . . . 4 (𝑚 = 0 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0))))
65imbi2d 229 . . 3 (𝑚 = 0 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0)))))
7 oveq2 5782 . . . . . 6 (𝑚 = 𝑘 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑𝑘))
87oveq2d 5790 . . . . 5 (𝑚 = 𝑘 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑𝑘)))
9 oveq2 5782 . . . . . 6 (𝑚 = 𝑘 → (𝑁 + 𝑚) = (𝑁 + 𝑘))
109fveq2d 5425 . . . . 5 (𝑚 = 𝑘 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 𝑘)))
118, 10breq12d 3942 . . . 4 (𝑚 = 𝑘 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))))
1211imbi2d 229 . . 3 (𝑚 = 𝑘 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)))))
13 oveq2 5782 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑(𝑘 + 1)))
1413oveq2d 5790 . . . . 5 (𝑚 = (𝑘 + 1) → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))))
15 oveq2 5782 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑁 + 𝑚) = (𝑁 + (𝑘 + 1)))
1615fveq2d 5425 . . . . 5 (𝑚 = (𝑘 + 1) → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + (𝑘 + 1))))
1714, 16breq12d 3942 . . . 4 (𝑚 = (𝑘 + 1) → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1)))))
1817imbi2d 229 . . 3 (𝑚 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
19 oveq2 5782 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑𝑀))
2019oveq2d 5790 . . . . 5 (𝑚 = 𝑀 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑𝑀)))
21 oveq2 5782 . . . . . 6 (𝑚 = 𝑀 → (𝑁 + 𝑚) = (𝑁 + 𝑀))
2221fveq2d 5425 . . . . 5 (𝑚 = 𝑀 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 𝑀)))
2320, 22breq12d 3942 . . . 4 (𝑚 = 𝑀 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))))
2423imbi2d 229 . . 3 (𝑚 = 𝑀 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))))
25 faccl 10481 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2625nnred 8733 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
2726leidd 8276 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (!‘𝑁))
28 nn0cn 8987 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29 peano2cn 7897 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
3028, 29syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
3130exp0d 10418 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)↑0) = 1)
3231oveq2d 5790 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) = ((!‘𝑁) · 1))
3325nncnd 8734 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
3433mulid1d 7783 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · 1) = (!‘𝑁))
3532, 34eqtrd 2172 . . . 4 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) = (!‘𝑁))
3628addid1d 7911 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 0) = 𝑁)
3736fveq2d 5425 . . . 4 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 0)) = (!‘𝑁))
3827, 35, 373brtr4d 3960 . . 3 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0)))
3926adantr 274 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
40 peano2nn0 9017 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4140nn0red 9031 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
42 reexpcl 10310 . . . . . . . . . . . . 13 (((𝑁 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℝ)
4341, 42sylan 281 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℝ)
4439, 43remulcld 7796 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ)
45 nnnn0 8984 . . . . . . . . . . . . . . 15 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℕ0)
4645nn0ge0d 9033 . . . . . . . . . . . . . 14 ((!‘𝑁) ∈ ℕ → 0 ≤ (!‘𝑁))
4725, 46syl 14 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
4847adantr 274 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ (!‘𝑁))
4941adantr 274 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
50 simpr 109 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5140nn0ge0d 9033 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
5251adantr 274 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ (𝑁 + 1))
5349, 50, 52expge0d 10442 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ ((𝑁 + 1)↑𝑘))
5439, 43, 48, 53mulge0d 8383 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)))
5544, 54jca 304 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))))
56 nn0addcl 9012 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 𝑘) ∈ ℕ0)
57 faccl 10481 . . . . . . . . . . . 12 ((𝑁 + 𝑘) ∈ ℕ0 → (!‘(𝑁 + 𝑘)) ∈ ℕ)
5856, 57syl 14 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + 𝑘)) ∈ ℕ)
5958nnred 8733 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + 𝑘)) ∈ ℝ)
60 nn0re 8986 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
61 peano2nn0 9017 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
6261nn0red 9031 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
63 readdcl 7746 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑁 + (𝑘 + 1)) ∈ ℝ)
6460, 62, 63syl2an 287 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + (𝑘 + 1)) ∈ ℝ)
6549, 52, 64jca31 307 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ))
6655, 59, 65jca31 307 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)))
6766adantr 274 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)))
68 simpr 109 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)))
6936adantr 274 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 0) = 𝑁)
70 nn0ge0 9002 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
7170adantl 275 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
72 nn0re 8986 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7372adantl 275 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
7460adantr 274 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℝ)
75 0re 7766 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
76 leadd2 8193 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7775, 76mp3an1 1302 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7873, 74, 77syl2anc 408 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7971, 78mpbid 146 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 0) ≤ (𝑁 + 𝑘))
8069, 79eqbrtrrd 3952 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝑘))
8156nn0red 9031 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 𝑘) ∈ ℝ)
82 1re 7765 . . . . . . . . . . . . . 14 1 ∈ ℝ
83 leadd1 8192 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ (𝑁 + 𝑘) ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8482, 83mp3an3 1304 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ (𝑁 + 𝑘) ∈ ℝ) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8574, 81, 84syl2anc 408 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8680, 85mpbid 146 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1))
87 nn0cn 8987 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
88 ax-1cn 7713 . . . . . . . . . . . . 13 1 ∈ ℂ
89 addass 7750 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9088, 89mp3an3 1304 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9128, 87, 90syl2an 287 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9286, 91breqtrd 3954 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1)))
9392adantr 274 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1)))
9468, 93jca 304 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) ∧ (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1))))
95 lemul12a 8620 . . . . . . . 8 ((((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)) → ((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) ∧ (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) ≤ ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1)))))
9667, 94, 95sylc 62 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) ≤ ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
97 expp1 10300 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑(𝑘 + 1)) = (((𝑁 + 1)↑𝑘) · (𝑁 + 1)))
9830, 97sylan 281 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑(𝑘 + 1)) = (((𝑁 + 1)↑𝑘) · (𝑁 + 1)))
9998oveq2d 5790 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = ((!‘𝑁) · (((𝑁 + 1)↑𝑘) · (𝑁 + 1))))
10033adantr 274 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑁) ∈ ℂ)
101 expcl 10311 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℂ)
10230, 101sylan 281 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℂ)
10330adantr 274 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
104100, 102, 103mulassd 7789 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) = ((!‘𝑁) · (((𝑁 + 1)↑𝑘) · (𝑁 + 1))))
10599, 104eqtr4d 2175 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)))
106105adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)))
107 facp1 10476 . . . . . . . . . 10 ((𝑁 + 𝑘) ∈ ℕ0 → (!‘((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)))
10856, 107syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)))
10991fveq2d 5425 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘((𝑁 + 𝑘) + 1)) = (!‘(𝑁 + (𝑘 + 1))))
11091oveq2d 5790 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
111108, 109, 1103eqtr3d 2180 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + (𝑘 + 1))) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
112111adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (!‘(𝑁 + (𝑘 + 1))) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
11396, 106, 1123brtr4d 3960 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))
114113ex 114 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1)))))
115114expcom 115 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
116115a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
1176, 12, 18, 24, 38, 116nn0ind 9165 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))))
118117impcom 124 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625  cle 7801  cn 8720  0cn0 8977  cexp 10292  !cfa 10471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293  df-fac 10472
This theorem is referenced by:  eftlub  11396
  Copyright terms: Public domain W3C validator