ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facwordi GIF version

Theorem facwordi 10486
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))

Proof of Theorem facwordi
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3933 . . . . . 6 (𝑗 = 0 → (𝑀𝑗𝑀 ≤ 0))
21anbi2d 459 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ 0)))
3 fveq2 5421 . . . . . 6 (𝑗 = 0 → (!‘𝑗) = (!‘0))
43breq2d 3941 . . . . 5 (𝑗 = 0 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘0)))
52, 4imbi12d 233 . . . 4 (𝑗 = 0 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))))
6 breq2 3933 . . . . . 6 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
76anbi2d 459 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑘)))
8 fveq2 5421 . . . . . 6 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98breq2d 3941 . . . . 5 (𝑗 = 𝑘 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑘)))
107, 9imbi12d 233 . . . 4 (𝑗 = 𝑘 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘))))
11 breq2 3933 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
1211anbi2d 459 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1))))
13 fveq2 5421 . . . . . 6 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1413breq2d 3941 . . . . 5 (𝑗 = (𝑘 + 1) → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
1512, 14imbi12d 233 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
16 breq2 3933 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
1716anbi2d 459 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑁)))
18 fveq2 5421 . . . . . 6 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
1918breq2d 3941 . . . . 5 (𝑗 = 𝑁 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑁)))
2017, 19imbi12d 233 . . . 4 (𝑗 = 𝑁 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))))
21 nn0le0eq0 9005 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
2221biimpa 294 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → 𝑀 = 0)
2322fveq2d 5425 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) = (!‘0))
24 fac0 10474 . . . . . . 7 (!‘0) = 1
25 1re 7765 . . . . . . 7 1 ∈ ℝ
2624, 25eqeltri 2212 . . . . . 6 (!‘0) ∈ ℝ
2726leidi 8247 . . . . 5 (!‘0) ≤ (!‘0)
2823, 27eqbrtrdi 3967 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))
29 impexp 261 . . . . 5 (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) ↔ (𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))))
30 simpl 108 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
3130nn0zd 9171 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑀 ∈ ℤ)
32 peano2nn0 9017 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3332adantl 275 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
3433nn0zd 9171 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
35 zleloe 9101 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
3631, 34, 35syl2anc 408 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
37 nn0leltp1 9117 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘𝑀 < (𝑘 + 1)))
38 faccl 10481 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3938nnred 8733 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℝ)
40 nn0re 8986 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
41 peano2re 7898 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
4338nnnn0d 9030 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ0)
4443nn0ge0d 9033 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 0 ≤ (!‘𝑘))
45 nn0p1nn 9016 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
4645nnge1d 8763 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 1 ≤ (𝑘 + 1))
4739, 42, 44, 46lemulge11d 8695 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ ((!‘𝑘) · (𝑘 + 1)))
48 facp1 10476 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4947, 48breqtrrd 3956 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
5049adantl 275 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
51 faccl 10481 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
5251nnred 8733 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
5352adantr 274 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
5439adantl 275 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
5532faccld 10482 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
5655nnred 8733 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
5756adantl 275 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℝ)
58 letr 7847 . . . . . . . . . . . . . . . . 17 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑘) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5953, 54, 57, 58syl3anc 1216 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6050, 59mpan2d 424 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑀) ≤ (!‘𝑘) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6160imim2d 54 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀𝑘 → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6261com23 78 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6337, 62sylbird 169 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 < (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
64 fveq2 5421 . . . . . . . . . . . . . . 15 (𝑀 = (𝑘 + 1) → (!‘𝑀) = (!‘(𝑘 + 1)))
6552leidd 8276 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (!‘𝑀) ≤ (!‘𝑀))
66 breq2 3933 . . . . . . . . . . . . . . . 16 ((!‘𝑀) = (!‘(𝑘 + 1)) → ((!‘𝑀) ≤ (!‘𝑀) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6765, 66syl5ibcom 154 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((!‘𝑀) = (!‘(𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6864, 67syl5 32 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6968adantr 274 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
7069a1dd 48 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7163, 70jaod 706 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1)) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7236, 71sylbid 149 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7372ex 114 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7473com13 80 . . . . . . . 8 (𝑀 ≤ (𝑘 + 1) → (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7574com4l 84 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7675a2d 26 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → (𝑀 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7776imp4a 346 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7829, 77syl5bi 151 . . . 4 (𝑘 ∈ ℕ0 → (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
795, 10, 15, 20, 28, 78nn0ind 9165 . . 3 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁)))
80793impib 1179 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
81803com12 1185 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  0cn0 8977  cz 9054  !cfa 10471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-fac 10472
This theorem is referenced by:  facavg  10492
  Copyright terms: Public domain W3C validator