ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falimtru GIF version

Theorem falimtru 1318
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falimtru ((⊥ → ⊤) ↔ ⊤)

Proof of Theorem falimtru
StepHypRef Expression
1 falim 1273 . 2 (⊥ → ⊤)
21bitru 1271 1 ((⊥ → ⊤) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102  wtru 1260  wfal 1264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-fal 1265
This theorem is referenced by:  trubifal  1323
  Copyright terms: Public domain W3C validator