ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falorfal GIF version

Theorem falorfal 1315
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falorfal ((⊥ ∨ ⊥) ↔ ⊥)

Proof of Theorem falorfal
StepHypRef Expression
1 oridm 684 1 ((⊥ ∨ ⊥) ↔ ⊥)
Colors of variables: wff set class
Syntax hints:  wb 102  wo 639  wfal 1264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640
This theorem depends on definitions:  df-bi 114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator