![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feu | GIF version |
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
feu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5097 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fneu2 5055 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹) | |
3 | 1, 2 | sylan 277 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹) |
4 | opelf 5113 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | simprd 112 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹) → 𝑦 ∈ 𝐵) |
6 | 5 | ex 113 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 386 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝑦〉 ∈ 𝐹 ↔ (𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
8 | 7 | eubidv 1951 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
9 | 8 | adantr 270 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
10 | 3, 9 | mpbid 145 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹)) |
11 | df-reu 2360 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹)) | |
12 | 10, 11 | sylibr 132 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 ∃!weu 1943 ∃!wreu 2355 〈cop 3419 Fn wfn 4947 ⟶wf 4948 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-reu 2360 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 df-opab 3860 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-fun 4954 df-fn 4955 df-f 4956 |
This theorem is referenced by: fsn 5387 f1ofveu 5551 |
Copyright terms: Public domain | W3C validator |