![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffun | GIF version |
Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5071 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 5021 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 4920 Fn wfn 4921 ⟶wf 4922 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-fn 4929 df-f 4930 |
This theorem is referenced by: funssxp 5085 f00 5106 fofun 5132 fun11iun 5172 fimacnv 5322 dff3im 5338 fmptco 5356 fliftf 5464 smores2 5937 ac6sfi 6421 nn0supp 8396 frecuzrdg0 9484 frecuzrdgsuc 9485 frecuzrdgdomlem 9488 frecuzrdg0t 9493 frecuzrdgsuctlem 9494 climdm 10261 |
Copyright terms: Public domain | W3C validator |