Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidifsnid GIF version

Theorem fidifsnid 6363
 Description: If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3538 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
Assertion
Ref Expression
fidifsnid ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem fidifsnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difsnss 3538 . . 3 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
21adantl 266 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
3 simpr 107 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
4 velsn 3420 . . . . . . 7 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
53, 4sylibr 141 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) ∧ 𝑥 = 𝐵) → 𝑥 ∈ {𝐵})
6 elun2 3139 . . . . . 6 (𝑥 ∈ {𝐵} → 𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
75, 6syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) ∧ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
8 simplr 490 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐴)
9 simpr 107 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 = 𝐵)
109, 4sylnibr 612 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 ∈ {𝐵})
118, 10eldifd 2956 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴 ∖ {𝐵}))
12 elun1 3138 . . . . . 6 (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
1311, 12syl 14 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
14 simpll 489 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) → 𝐴 ∈ Fin)
15 simpr 107 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
16 simplr 490 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) → 𝐵𝐴)
17 fidceq 6361 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴𝐵𝐴) → DECID 𝑥 = 𝐵)
1814, 15, 16, 17syl3anc 1146 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) → DECID 𝑥 = 𝐵)
19 df-dc 754 . . . . . 6 (DECID 𝑥 = 𝐵 ↔ (𝑥 = 𝐵 ∨ ¬ 𝑥 = 𝐵))
2018, 19sylib 131 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) → (𝑥 = 𝐵 ∨ ¬ 𝑥 = 𝐵))
217, 13, 20mpjaodan 722 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝑥𝐴) → 𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
2221ex 112 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝑥𝐴𝑥 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})))
2322ssrdv 2979 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴 ⊆ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
242, 23eqssd 2990 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ∨ wo 639  DECID wdc 753   = wceq 1259   ∈ wcel 1409   ∖ cdif 2942   ∪ cun 2943   ⊆ wss 2945  {csn 3403  Fincfn 6252 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-en 6253  df-fin 6255 This theorem is referenced by:  findcard2  6377  findcard2s  6378
 Copyright terms: Public domain W3C validator