ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashdom GIF version

Theorem fihashdom 10542
Description: Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.)
Assertion
Ref Expression
fihashdom ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem fihashdom
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6648 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 274 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6648 . . . . 5 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 119 . . . 4 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
65ad2antlr 480 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
7 simplrr 525 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
8 domen1 6729 . . . . 5 (𝐴𝑛 → (𝐴𝑚𝑛𝑚))
97, 8syl 14 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝑚𝑛𝑚))
10 simprr 521 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵𝑚)
11 domen2 6730 . . . . 5 (𝐵𝑚 → (𝐴𝐵𝐴𝑚))
1210, 11syl 14 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵𝐴𝑚))
13 0zd 9059 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 0 ∈ ℤ)
14 eqid 2137 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
15 simplrl 524 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
16 simprl 520 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
1713, 14, 15, 16frec2uzled 10195 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛𝑚 ↔ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ≤ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
18 nndomo 6751 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑛𝑚))
1915, 16, 18syl2anc 408 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛𝑚𝑛𝑚))
207ensymd 6670 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛𝐴)
21 hashennn 10519 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑛𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
2215, 20, 21syl2anc 408 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
2310ensymd 6670 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚𝐵)
24 hashennn 10519 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑚𝐵) → (♯‘𝐵) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
2516, 23, 24syl2anc 408 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐵) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
2622, 25breq12d 3937 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ≤ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
2717, 19, 263bitr4rd 220 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝑛𝑚))
289, 12, 273bitr4rd 220 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
296, 28rexlimddv 2552 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
303, 29rexlimddv 2552 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wrex 2415  wss 3066   class class class wbr 3924  cmpt 3984  ωcom 4499  cfv 5118  (class class class)co 5767  freccfrec 6280  cen 6625  cdom 6626  Fincfn 6627  0cc0 7613  1c1 7614   + caddc 7616  cle 7794  cz 9047  chash 10514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-recs 6195  df-frec 6281  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-ihash 10515
This theorem is referenced by:  fihashss  10555  phicl2  11879  phibnd  11882
  Copyright terms: Public domain W3C validator