![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fimacnvdisj | GIF version |
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
fimacnvdisj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4376 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
2 | frn 5077 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 2 | adantr 270 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → ran 𝐹 ⊆ 𝐵) |
4 | 1, 3 | syl5eqssr 3045 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → dom ◡𝐹 ⊆ 𝐵) |
5 | ssdisj 3301 | . . 3 ⊢ ((dom ◡𝐹 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) | |
6 | 4, 5 | sylancom 411 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) |
7 | imadisj 4711 | . 2 ⊢ ((◡𝐹 “ 𝐶) = ∅ ↔ (dom ◡𝐹 ∩ 𝐶) = ∅) | |
8 | 6, 7 | sylibr 132 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∩ cin 2973 ⊆ wss 2974 ∅c0 3252 ◡ccnv 4364 dom cdm 4365 ran crn 4366 “ cima 4368 ⟶wf 4922 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3253 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-br 3788 df-opab 3842 df-xp 4371 df-cnv 4373 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-f 4930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |