ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0 GIF version

Theorem fin0 6772
Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
Assertion
Ref Expression
fin0 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem fin0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6648 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simplrr 525 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
4 simpr 109 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 = ∅)
53, 4breqtrd 3949 . . . . . 6 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
6 en0 6682 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
75, 6sylib 121 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
8 nner 2310 . . . . 5 (𝐴 = ∅ → ¬ 𝐴 ≠ ∅)
97, 8syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 ≠ ∅)
10 n0r 3371 . . . . . 6 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
1110necon2bi 2361 . . . . 5 (𝐴 = ∅ → ¬ ∃𝑥 𝑥𝐴)
127, 11syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ ∃𝑥 𝑥𝐴)
139, 122falsed 691 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
14 simplrr 525 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → 𝐴𝑛)
1514adantr 274 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
1615ensymd 6670 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑛𝐴)
17 bren 6634 . . . . . . . 8 (𝑛𝐴 ↔ ∃𝑓 𝑓:𝑛1-1-onto𝐴)
1816, 17sylib 121 . . . . . . 7 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑓 𝑓:𝑛1-1-onto𝐴)
19 f1of 5360 . . . . . . . . . . . 12 (𝑓:𝑛1-1-onto𝐴𝑓:𝑛𝐴)
2019adantl 275 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑓:𝑛𝐴)
21 sucidg 4333 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ suc 𝑚)
2221ad3antlr 484 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚 ∈ suc 𝑚)
23 simplr 519 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑛 = suc 𝑚)
2422, 23eleqtrrd 2217 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚𝑛)
2520, 24ffvelrnd 5549 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝑓𝑚) ∈ 𝐴)
26 elex2 2697 . . . . . . . . . 10 ((𝑓𝑚) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
2725, 26syl 14 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → ∃𝑥 𝑥𝐴)
2827, 10syl 14 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝐴 ≠ ∅)
2928, 272thd 174 . . . . . . 7 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3018, 29exlimddv 1870 . . . . . 6 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3130ex 114 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3231rexlimdva 2547 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3332imp 123 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
34 nn0suc 4513 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3534ad2antrl 481 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3613, 33, 35mpjaodan 787 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
372, 36rexlimddv 2552 1 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wex 1468  wcel 1480  wne 2306  wrex 2415  c0 3358   class class class wbr 3924  suc csuc 4282  ωcom 4499  wf 5114  1-1-ontowf1o 5117  cfv 5118  cen 6625  Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-er 6422  df-en 6628  df-fin 6630
This theorem is referenced by:  findcard2  6776  findcard2s  6777  diffisn  6780  fimax2gtri  6788  elfi2  6853  elfir  6854  fiuni  6859  fifo  6861
  Copyright terms: Public domain W3C validator