Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0 GIF version

Theorem fin0 6373
 Description: A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
Assertion
Ref Expression
fin0 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem fin0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6272 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 117 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simplrr 496 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴𝑛)
4 simpr 107 . . . . . . 7 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝑛 = ∅)
53, 4breqtrd 3816 . . . . . 6 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 ≈ ∅)
6 en0 6306 . . . . . 6 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
75, 6sylib 131 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → 𝐴 = ∅)
8 nner 2224 . . . . 5 (𝐴 = ∅ → ¬ 𝐴 ≠ ∅)
97, 8syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ 𝐴 ≠ ∅)
10 n0r 3262 . . . . . 6 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
1110necon2bi 2275 . . . . 5 (𝐴 = ∅ → ¬ ∃𝑥 𝑥𝐴)
127, 11syl 14 . . . 4 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → ¬ ∃𝑥 𝑥𝐴)
139, 122falsed 628 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑛 = ∅) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
14 simplrr 496 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → 𝐴𝑛)
1514adantr 265 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝐴𝑛)
1615ensymd 6294 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → 𝑛𝐴)
17 bren 6259 . . . . . . . 8 (𝑛𝐴 ↔ ∃𝑓 𝑓:𝑛1-1-onto𝐴)
1816, 17sylib 131 . . . . . . 7 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → ∃𝑓 𝑓:𝑛1-1-onto𝐴)
19 f1of 5154 . . . . . . . . . . . 12 (𝑓:𝑛1-1-onto𝐴𝑓:𝑛𝐴)
2019adantl 266 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑓:𝑛𝐴)
21 sucidg 4181 . . . . . . . . . . . . 13 (𝑚 ∈ ω → 𝑚 ∈ suc 𝑚)
2221ad3antlr 470 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚 ∈ suc 𝑚)
23 simplr 490 . . . . . . . . . . . 12 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑛 = suc 𝑚)
2422, 23eleqtrrd 2133 . . . . . . . . . . 11 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝑚𝑛)
2520, 24ffvelrnd 5331 . . . . . . . . . 10 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝑓𝑚) ∈ 𝐴)
26 elex2 2587 . . . . . . . . . 10 ((𝑓𝑚) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
2725, 26syl 14 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → ∃𝑥 𝑥𝐴)
2827, 10syl 14 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → 𝐴 ≠ ∅)
2928, 272thd 168 . . . . . . 7 (((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) ∧ 𝑓:𝑛1-1-onto𝐴) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3018, 29exlimddv 1794 . . . . . 6 ((((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) ∧ 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
3130ex 112 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ 𝑚 ∈ ω) → (𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3231rexlimdva 2450 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (∃𝑚 ∈ ω 𝑛 = suc 𝑚 → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)))
3332imp 119 . . 3 (((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ ∃𝑚 ∈ ω 𝑛 = suc 𝑚) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
34 nn0suc 4355 . . . 4 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3534ad2antrl 467 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 = ∅ ∨ ∃𝑚 ∈ ω 𝑛 = suc 𝑚))
3613, 33, 35mpjaodan 722 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
372, 36rexlimddv 2454 1 (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ↔ wb 102   ∨ wo 639   = wceq 1259  ∃wex 1397   ∈ wcel 1409   ≠ wne 2220  ∃wrex 2324  ∅c0 3252   class class class wbr 3792  suc csuc 4130  ωcom 4341  ⟶wf 4926  –1-1-onto→wf1o 4929  ‘cfv 4930   ≈ cen 6250  Fincfn 6252 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-iinf 4339 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-id 4058  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-er 6137  df-en 6253  df-fin 6255 This theorem is referenced by:  findcard2  6377  findcard2s  6378  diffisn  6381
 Copyright terms: Public domain W3C validator