ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds1 GIF version

Theorem finds1 4351
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1 (𝑥 = ∅ → (𝜑𝜓))
finds1.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds1.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds1.4 𝜓
finds1.5 (𝑦 ∈ ω → (𝜒𝜃))
Assertion
Ref Expression
finds1 (𝑥 ∈ ω → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2082 . 2 ∅ = ∅
2 finds1.1 . . 3 (𝑥 = ∅ → (𝜑𝜓))
3 finds1.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
4 finds1.3 . . 3 (𝑥 = suc 𝑦 → (𝜑𝜃))
5 finds1.4 . . . 4 𝜓
65a1i 9 . . 3 (∅ = ∅ → 𝜓)
7 finds1.5 . . . 4 (𝑦 ∈ ω → (𝜒𝜃))
87a1d 22 . . 3 (𝑦 ∈ ω → (∅ = ∅ → (𝜒𝜃)))
92, 3, 4, 6, 8finds2 4350 . 2 (𝑥 ∈ ω → (∅ = ∅ → 𝜑))
101, 9mpi 15 1 (𝑥 ∈ ω → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1285  wcel 1434  c0 3258  suc csuc 4128  ωcom 4339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-uni 3610  df-int 3645  df-suc 4134  df-iom 4340
This theorem is referenced by:  findcard  6422  findcard2  6423  findcard2s  6424
  Copyright terms: Public domain W3C validator