Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiprc GIF version

Theorem fiprc 6360
 Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Assertion
Ref Expression
fiprc Fin ∉ V

Proof of Theorem fiprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnex 4207 . 2 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
2 vex 2605 . . . . . . . . 9 𝑦 ∈ V
3 snfig 6359 . . . . . . . . 9 (𝑦 ∈ V → {𝑦} ∈ Fin)
42, 3ax-mp 7 . . . . . . . 8 {𝑦} ∈ Fin
5 eleq1 2142 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin))
64, 5mpbiri 166 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 ∈ Fin)
76exlimiv 1530 . . . . . 6 (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin)
87abssi 3070 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin
9 ssexg 3925 . . . . 5 (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
108, 9mpan 415 . . . 4 (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
1110con3i 595 . . 3 (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V)
12 df-nel 2341 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
13 df-nel 2341 . . 3 (Fin ∉ V ↔ ¬ Fin ∈ V)
1411, 12, 133imtr4i 199 . 2 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V)
151, 14ax-mp 7 1 Fin ∉ V
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   = wceq 1285  ∃wex 1422   ∈ wcel 1434  {cab 2068   ∉ wnel 2340  Vcvv 2602   ⊆ wss 2974  {csn 3406  Fincfn 6287 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-nel 2341  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-1o 6065  df-en 6288  df-fin 6290 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator