Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumcvg GIF version

Theorem fisumcvg 10401
 Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummo.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
fisumcvg.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fisumcvg (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ (seq𝑀( + , 𝐹, ℂ)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀   𝑘,𝐹

Proof of Theorem fisumcvg
Dummy variables 𝑛 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2083 . 2 (ℤ𝑁) = (ℤ𝑁)
2 isumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 8761 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 14 . 2 (𝜑𝑁 ∈ ℤ)
5 iseqex 9575 . . 3 seq𝑀( + , 𝐹, ℂ) ∈ V
65a1i 9 . 2 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ V)
7 eqid 2083 . . . 4 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 8757 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
92, 8syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
10 eluzelz 8761 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1110adantl 271 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
12 iftrue 3373 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
1312adantl 271 . . . . . . . . . 10 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
14 isummo.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1513, 14eqeltrd 2159 . . . . . . . . 9 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1615ex 113 . . . . . . . 8 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
1716adantr 270 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
18 iffalse 3376 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
19 0cn 7225 . . . . . . . . 9 0 ∈ ℂ
2018, 19syl6eqel 2173 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
2120a1i 9 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (¬ 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
22 isummo.dc . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
23 exmiddc 778 . . . . . . . 8 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
2422, 23syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
2517, 21, 24mpjaod 671 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
26 isummo.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
2726fvmpt2 5306 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
2811, 25, 27syl2anc 403 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
2928, 25eqeltrd 2159 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
307, 9, 29iserf 9601 . . 3 (𝜑 → seq𝑀( + , 𝐹, ℂ):(ℤ𝑀)⟶ℂ)
3130, 2ffvelrnd 5355 . 2 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℂ)
32 addid1 7365 . . . . 5 (𝑚 ∈ ℂ → (𝑚 + 0) = 𝑚)
3332adantl 271 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ℂ) → (𝑚 + 0) = 𝑚)
342adantr 270 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
35 simpr 108 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
3631adantr 270 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℂ)
37 elfzuz 9169 . . . . . 6 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
38 eluzelz 8761 . . . . . . . . 9 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → 𝑚 ∈ ℤ)
3938adantl 271 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ ℤ)
40 fisumcvg.4 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (𝑀...𝑁))
4140sseld 3007 . . . . . . . . . . 11 (𝜑 → (𝑚𝐴𝑚 ∈ (𝑀...𝑁)))
42 fznuz 9247 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑁) → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1)))
4341, 42syl6 33 . . . . . . . . . 10 (𝜑 → (𝑚𝐴 → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1))))
4443con2d 587 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ‘(𝑁 + 1)) → ¬ 𝑚𝐴))
4544imp 122 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑚𝐴)
4639, 45eldifd 2992 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ (ℤ ∖ 𝐴))
47 fveq2 5229 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
4847eqeq1d 2091 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) = 0 ↔ (𝐹𝑚) = 0))
49 eldifi 3104 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
50 eldifn 3105 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
5150, 18syl 14 . . . . . . . . . . 11 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) = 0)
5251, 19syl6eqel 2173 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
5349, 52, 27syl2anc 403 . . . . . . . . 9 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
5453, 51eqtrd 2115 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 0)
5548, 54vtoclga 2673 . . . . . . 7 (𝑚 ∈ (ℤ ∖ 𝐴) → (𝐹𝑚) = 0)
5646, 55syl 14 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑚) = 0)
5737, 56sylan2 280 . . . . 5 ((𝜑𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 0)
5857adantlr 461 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 0)
59 cnex 7211 . . . . 5 ℂ ∈ V
6059a1i 9 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ℂ ∈ V)
6147eleq1d 2151 . . . . 5 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
6229ralrimiva 2439 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
6362ad2antrr 472 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
64 simpr 108 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
6561, 63, 64rspcdva 2715 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝐹𝑚) ∈ ℂ)
66 addcl 7212 . . . . 5 ((𝑚 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑚 + 𝑧) ∈ ℂ)
6766adantl 271 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ (𝑚 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑚 + 𝑧) ∈ ℂ)
6833, 34, 35, 36, 58, 60, 65, 67iseqid2 9616 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹, ℂ)‘𝑁) = (seq𝑀( + , 𝐹, ℂ)‘𝑛))
6968eqcomd 2088 . 2 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹, ℂ)‘𝑛) = (seq𝑀( + , 𝐹, ℂ)‘𝑁))
701, 4, 6, 31, 69climconst 10330 1 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ (seq𝑀( + , 𝐹, ℂ)‘𝑁))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 102   ∨ wo 662  DECID wdc 776   = wceq 1285   ∈ wcel 1434  ∀wral 2353  Vcvv 2610   ∖ cdif 2979   ⊆ wss 2982  ifcif 3368   class class class wbr 3805   ↦ cmpt 3859  ‘cfv 4952  (class class class)co 5563  ℂcc 7093  0cc0 7095  1c1 7096   + caddc 7098  ℤcz 8484  ℤ≥cuz 8752  ...cfz 9157  seqcseq 9573   ⇝ cli 10318 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-n0 8408  df-z 8485  df-uz 8753  df-rp 8868  df-fz 9158  df-iseq 9574  df-iexp 9625  df-cj 9930  df-rsqrt 10085  df-abs 10086  df-clim 10319 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator