ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfund GIF version

Theorem fliftfund 5468
Description: The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
fliftfun.4 (𝑥 = 𝑦𝐴 = 𝐶)
fliftfun.5 (𝑥 = 𝑦𝐵 = 𝐷)
fliftfund.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)
Assertion
Ref Expression
fliftfund (𝜑 → Fun 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦,𝑅   𝑥,𝐷   𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)   𝐹(𝑥)

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)
213exp2 1157 . . . 4 (𝜑 → (𝑥𝑋 → (𝑦𝑋 → (𝐴 = 𝐶𝐵 = 𝐷))))
32imp32 253 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐴 = 𝐶𝐵 = 𝐷))
43ralrimivva 2444 . 2 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷))
5 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
6 flift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑅)
7 flift.3 . . 3 ((𝜑𝑥𝑋) → 𝐵𝑆)
8 fliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐶)
9 fliftfun.5 . . 3 (𝑥 = 𝑦𝐵 = 𝐷)
105, 6, 7, 8, 9fliftfun 5467 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷)))
114, 10mpbird 165 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  wral 2349  cop 3409  cmpt 3847  ran crn 4372  Fun wfun 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator