ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flltdivnn0lt GIF version

Theorem flltdivnn0lt 9438
Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
flltdivnn0lt ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))

Proof of Theorem flltdivnn0lt
StepHypRef Expression
1 simp1 939 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → 𝐾 ∈ ℕ0)
21nn0zd 8600 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → 𝐾 ∈ ℤ)
3 simp3 941 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → 𝐿 ∈ ℕ)
4 znq 8842 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℚ)
54flqcld 9411 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℤ)
62, 3, 5syl2anc 403 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℤ)
76adantr 270 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ∈ ℤ)
87zred 8602 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
92adantr 270 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℤ)
103adantr 270 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐿 ∈ ℕ)
11 qre 8843 . . . . 5 ((𝐾 / 𝐿) ∈ ℚ → (𝐾 / 𝐿) ∈ ℝ)
124, 11syl 14 . . . 4 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
139, 10, 12syl2anc 403 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 / 𝐿) ∈ ℝ)
14 simp2 940 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → 𝑁 ∈ ℕ0)
1514nn0zd 8600 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → 𝑁 ∈ ℤ)
1615adantr 270 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℤ)
17 znq 8842 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℚ)
18 qre 8843 . . . . 5 ((𝑁 / 𝐿) ∈ ℚ → (𝑁 / 𝐿) ∈ ℝ)
1917, 18syl 14 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ)
2016, 10, 19syl2anc 403 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝑁 / 𝐿) ∈ ℝ)
21 fldivnn0le 9437 . . . . 5 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
22213adant2 958 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
2322adantr 270 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
24 simpr 108 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
25 nn0re 8416 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
26 nn0re 8416 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 nnre 8165 . . . . . . . 8 (𝐿 ∈ ℕ → 𝐿 ∈ ℝ)
28 nngt0 8183 . . . . . . . 8 (𝐿 ∈ ℕ → 0 < 𝐿)
2927, 28jca 300 . . . . . . 7 (𝐿 ∈ ℕ → (𝐿 ∈ ℝ ∧ 0 < 𝐿))
3025, 26, 293anim123i 1124 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)))
3130adantr 270 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)))
32 ltdiv1 8065 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
3331, 32syl 14 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
3424, 33mpbid 145 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 / 𝐿) < (𝑁 / 𝐿))
358, 13, 20, 23, 34lelttrd 7353 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))
3635ex 113 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920  wcel 1434   class class class wbr 3805  cfv 4952  (class class class)co 5563  cr 7094  0cc0 7095   < clt 7267  cle 7268   / cdiv 7879  cn 8158  0cn0 8407  cz 8484  cq 8837  cfl 9402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-q 8838  df-rp 8868  df-fl 9404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator