Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqltnz GIF version

Theorem flqltnz 9202
 Description: If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.)
Assertion
Ref Expression
flqltnz ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴)

Proof of Theorem flqltnz
StepHypRef Expression
1 simpr 107 . . . . . 6 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ 𝐴 ∈ ℤ)
2 flqidz 9201 . . . . . . 7 (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴𝐴 ∈ ℤ))
32adantr 265 . . . . . 6 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) = 𝐴𝐴 ∈ ℤ))
41, 3mtbird 606 . . . . 5 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ (⌊‘𝐴) = 𝐴)
54neqned 2225 . . . 4 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≠ 𝐴)
65necomd 2304 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ≠ (⌊‘𝐴))
7 simpl 106 . . . . . 6 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℚ)
87flqcld 9192 . . . . 5 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
9 zq 8628 . . . . 5 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
108, 9syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℚ)
11 qapne 8641 . . . 4 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴)))
1210, 11syldan 270 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴)))
136, 12mpbird 160 . 2 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 # (⌊‘𝐴))
148zred 8389 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
15 qre 8627 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
1615adantr 265 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ)
17 flqlelt 9191 . . . . 5 (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
1817adantr 265 . . . 4 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
1918simpld 109 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
2014, 16, 19leltapd 7672 . 2 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) < 𝐴𝐴 # (⌊‘𝐴)))
2113, 20mpbird 160 1 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1257   ∈ wcel 1407   ≠ wne 2218   class class class wbr 3789  ‘cfv 4927  (class class class)co 5537  ℝcr 6916  1c1 6918   + caddc 6920   < clt 7089   ≤ cle 7090   # cap 7616  ℤcz 8272  ℚcq 8621  ⌊cfl 9185 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-mulrcl 7011  ax-addcom 7012  ax-mulcom 7013  ax-addass 7014  ax-mulass 7015  ax-distr 7016  ax-i2m1 7017  ax-1rid 7019  ax-0id 7020  ax-rnegex 7021  ax-precex 7022  ax-cnre 7023  ax-pre-ltirr 7024  ax-pre-ltwlin 7025  ax-pre-lttrn 7026  ax-pre-apti 7027  ax-pre-ltadd 7028  ax-pre-mulgt0 7029  ax-pre-mulext 7030  ax-arch 7031 This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-reu 2328  df-rmo 2329  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-iltp 6596  df-enr 6839  df-nr 6840  df-ltr 6843  df-0r 6844  df-1r 6845  df-0 6924  df-1 6925  df-r 6927  df-lt 6930  df-pnf 7091  df-mnf 7092  df-xr 7093  df-ltxr 7094  df-le 7095  df-sub 7217  df-neg 7218  df-reap 7610  df-ap 7617  df-div 7696  df-inn 7961  df-n0 8210  df-z 8273  df-q 8622  df-rp 8652  df-fl 9187 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator