![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqltnz | GIF version |
Description: If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.) |
Ref | Expression |
---|---|
flqltnz | ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 108 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ 𝐴 ∈ ℤ) | |
2 | flqidz 9368 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) | |
3 | 2 | adantr 270 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) |
4 | 1, 3 | mtbird 631 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ (⌊‘𝐴) = 𝐴) |
5 | 4 | neqned 2253 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≠ 𝐴) |
6 | 5 | necomd 2332 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ≠ (⌊‘𝐴)) |
7 | simpl 107 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℚ) | |
8 | 7 | flqcld 9359 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
9 | zq 8792 | . . . . 5 ⊢ ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℚ) |
11 | qapne 8805 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴))) | |
12 | 10, 11 | syldan 276 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴))) |
13 | 6, 12 | mpbird 165 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 # (⌊‘𝐴)) |
14 | 8 | zred 8550 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
15 | qre 8791 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
16 | 15 | adantr 270 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ) |
17 | flqlelt 9358 | . . . . 5 ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
18 | 17 | adantr 270 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) |
19 | 18 | simpld 110 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
20 | 14, 16, 19 | leltapd 7804 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) < 𝐴 ↔ 𝐴 # (⌊‘𝐴))) |
21 | 13, 20 | mpbird 165 | 1 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ≠ wne 2246 class class class wbr 3793 ‘cfv 4932 (class class class)co 5543 ℝcr 7042 1c1 7044 + caddc 7046 < clt 7215 ≤ cle 7216 # cap 7748 ℤcz 8432 ℚcq 8785 ⌊cfl 9350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-mulrcl 7137 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-0lt1 7144 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-precex 7148 ax-cnre 7149 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-apti 7153 ax-pre-ltadd 7154 ax-pre-mulgt0 7155 ax-pre-mulext 7156 ax-arch 7157 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-id 4056 df-po 4059 df-iso 4060 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-sub 7348 df-neg 7349 df-reap 7742 df-ap 7749 df-div 7828 df-inn 8107 df-n0 8356 df-z 8433 df-q 8786 df-rp 8816 df-fl 9352 |
This theorem is referenced by: fldivndvdslt 10479 |
Copyright terms: Public domain | W3C validator |