![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqpmodeq | GIF version |
Description: Partition of a division into its integer part and the remainder. (Contributed by Jim Kingdon, 16-Oct-2021.) |
Ref | Expression |
---|---|
flqpmodeq | ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modqvalr 9477 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵))) | |
2 | 1 | eqcomd 2088 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵)) = (𝐴 mod 𝐵)) |
3 | qcn 8870 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
4 | 3 | 3ad2ant1 960 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐴 ∈ ℂ) |
5 | simp3 941 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 < 𝐵) | |
6 | 5 | gt0ne0d 7750 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ≠ 0) |
7 | qdivcl 8879 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ) | |
8 | 6, 7 | syld3an3 1215 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 / 𝐵) ∈ ℚ) |
9 | 8 | flqcld 9429 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
10 | 9 | zcnd 8621 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
11 | qcn 8870 | . . . . 5 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
12 | 11 | 3ad2ant2 961 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ) |
13 | 10, 12 | mulcld 7271 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((⌊‘(𝐴 / 𝐵)) · 𝐵) ∈ ℂ) |
14 | modqcl 9478 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ ℚ) | |
15 | qcn 8870 | . . . 4 ⊢ ((𝐴 mod 𝐵) ∈ ℚ → (𝐴 mod 𝐵) ∈ ℂ) | |
16 | 14, 15 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ ℂ) |
17 | 4, 13, 16 | subaddd 7574 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵)) = (𝐴 mod 𝐵) ↔ (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴)) |
18 | 2, 17 | mpbid 145 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ≠ wne 2249 class class class wbr 3805 ‘cfv 4952 (class class class)co 5564 ℂcc 7111 0cc0 7113 + caddc 7116 · cmul 7118 < clt 7285 − cmin 7416 / cdiv 7897 ℚcq 8855 ⌊cfl 9420 mod cmo 9474 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-mulrcl 7207 ax-addcom 7208 ax-mulcom 7209 ax-addass 7210 ax-mulass 7211 ax-distr 7212 ax-i2m1 7213 ax-0lt1 7214 ax-1rid 7215 ax-0id 7216 ax-rnegex 7217 ax-precex 7218 ax-cnre 7219 ax-pre-ltirr 7220 ax-pre-ltwlin 7221 ax-pre-lttrn 7222 ax-pre-apti 7223 ax-pre-ltadd 7224 ax-pre-mulgt0 7225 ax-pre-mulext 7226 ax-arch 7227 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-po 4079 df-iso 4080 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-fv 4960 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 df-sub 7418 df-neg 7419 df-reap 7812 df-ap 7819 df-div 7898 df-inn 8177 df-n0 8426 df-z 8503 df-q 8856 df-rp 8886 df-fl 9422 df-mod 9475 |
This theorem is referenced by: modqmuladd 9518 |
Copyright terms: Public domain | W3C validator |