ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt2x GIF version

Theorem fmpt2x 5853
Description: Functionality, domain and codomain of a class given by the "maps to" notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.)
Hypothesis
Ref Expression
fmpt2x.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fmpt2x (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpt2x
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . . . . . 8 𝑧 ∈ V
2 vex 2577 . . . . . . . 8 𝑤 ∈ V
31, 2op1std 5802 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) = 𝑧)
43csbeq1d 2885 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥(2nd𝑣) / 𝑦𝐶)
51, 2op2ndd 5803 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → (2nd𝑣) = 𝑤)
65csbeq1d 2885 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (2nd𝑣) / 𝑦𝐶 = 𝑤 / 𝑦𝐶)
76csbeq2dv 2902 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → 𝑧 / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
84, 7eqtrd 2088 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
98eleq1d 2122 . . . 4 (𝑣 = ⟨𝑧, 𝑤⟩ → ((1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
109raliunxp 4504 . . 3 (∀𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)(1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷 ↔ ∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷)
11 nfv 1437 . . . . . . 7 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)
12 nfv 1437 . . . . . . 7 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)
13 nfv 1437 . . . . . . . . 9 𝑥 𝑧𝐴
14 nfcsb1v 2909 . . . . . . . . . 10 𝑥𝑧 / 𝑥𝐵
1514nfcri 2188 . . . . . . . . 9 𝑥 𝑤𝑧 / 𝑥𝐵
1613, 15nfan 1473 . . . . . . . 8 𝑥(𝑧𝐴𝑤𝑧 / 𝑥𝐵)
17 nfcsb1v 2909 . . . . . . . . 9 𝑥𝑧 / 𝑥𝑤 / 𝑦𝐶
1817nfeq2 2205 . . . . . . . 8 𝑥 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶
1916, 18nfan 1473 . . . . . . 7 𝑥((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
20 nfv 1437 . . . . . . . 8 𝑦(𝑧𝐴𝑤𝑧 / 𝑥𝐵)
21 nfcv 2194 . . . . . . . . . 10 𝑦𝑧
22 nfcsb1v 2909 . . . . . . . . . 10 𝑦𝑤 / 𝑦𝐶
2321, 22nfcsb 2911 . . . . . . . . 9 𝑦𝑧 / 𝑥𝑤 / 𝑦𝐶
2423nfeq2 2205 . . . . . . . 8 𝑦 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶
2520, 24nfan 1473 . . . . . . 7 𝑦((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
26 eleq1 2116 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2726adantr 265 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐴𝑧𝐴))
28 eleq1 2116 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
29 csbeq1a 2887 . . . . . . . . . . 11 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
3029eleq2d 2123 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑤𝐵𝑤𝑧 / 𝑥𝐵))
3128, 30sylan9bbr 444 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝑧 / 𝑥𝐵))
3227, 31anbi12d 450 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝑧 / 𝑥𝐵)))
33 csbeq1a 2887 . . . . . . . . . 10 (𝑦 = 𝑤𝐶 = 𝑤 / 𝑦𝐶)
34 csbeq1a 2887 . . . . . . . . . 10 (𝑥 = 𝑧𝑤 / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
3533, 34sylan9eqr 2110 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
3635eqeq2d 2067 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = 𝐶𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶))
3732, 36anbi12d 450 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)))
3811, 12, 19, 25, 37cbvoprab12 5605 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)}
39 df-mpt2 5544 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
40 df-mpt2 5544 . . . . . 6 (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶) = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)}
4138, 39, 403eqtr4i 2086 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶)
42 fmpt2x.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
438mpt2mptx 5622 . . . . 5 (𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵) ↦ (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶) = (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶)
4441, 42, 433eqtr4i 2086 . . . 4 𝐹 = (𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵) ↦ (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶)
4544fmpt 5346 . . 3 (∀𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)(1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
4610, 45bitr3i 179 . 2 (∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
47 nfv 1437 . . 3 𝑧𝑦𝐵 𝐶𝐷
4817nfel1 2204 . . . 4 𝑥𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷
4914, 48nfralxy 2377 . . 3 𝑥𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷
50 nfv 1437 . . . . 5 𝑤 𝐶𝐷
5122nfel1 2204 . . . . 5 𝑦𝑤 / 𝑦𝐶𝐷
5233eleq1d 2122 . . . . 5 (𝑦 = 𝑤 → (𝐶𝐷𝑤 / 𝑦𝐶𝐷))
5350, 51, 52cbvral 2546 . . . 4 (∀𝑦𝐵 𝐶𝐷 ↔ ∀𝑤𝐵 𝑤 / 𝑦𝐶𝐷)
5434eleq1d 2122 . . . . 5 (𝑥 = 𝑧 → (𝑤 / 𝑦𝐶𝐷𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5529, 54raleqbidv 2534 . . . 4 (𝑥 = 𝑧 → (∀𝑤𝐵 𝑤 / 𝑦𝐶𝐷 ↔ ∀𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5653, 55syl5bb 185 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝐶𝐷 ↔ ∀𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5747, 49, 56cbvral 2546 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 ↔ ∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷)
58 nfcv 2194 . . . 4 𝑧({𝑥} × 𝐵)
59 nfcv 2194 . . . . 5 𝑥{𝑧}
6059, 14nfxp 4398 . . . 4 𝑥({𝑧} × 𝑧 / 𝑥𝐵)
61 sneq 3413 . . . . 5 (𝑥 = 𝑧 → {𝑥} = {𝑧})
6261, 29xpeq12d 4397 . . . 4 (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × 𝑧 / 𝑥𝐵))
6358, 60, 62cbviun 3721 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)
6463feq2i 5067 . 2 (𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
6546, 57, 643bitr4i 205 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wcel 1409  wral 2323  csb 2879  {csn 3402  cop 3405   ciun 3684  cmpt 3845   × cxp 4370  wf 4925  cfv 4929  {coprab 5540  cmpt2 5541  1st c1st 5792  2nd c2nd 5793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-fv 4937  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795
This theorem is referenced by:  fmpt2  5854
  Copyright terms: Public domain W3C validator