ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmdif GIF version

Theorem fndmdif 5518
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdif ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴

Proof of Theorem fndmdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difss 3197 . . . . 5 (𝐹𝐺) ⊆ 𝐹
2 dmss 4733 . . . . 5 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
31, 2ax-mp 5 . . . 4 dom (𝐹𝐺) ⊆ dom 𝐹
4 fndm 5217 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54adantr 274 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
63, 5sseqtrid 3142 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
7 dfss1 3275 . . 3 (dom (𝐹𝐺) ⊆ 𝐴 ↔ (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
86, 7sylib 121 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
9 vex 2684 . . . . 5 𝑥 ∈ V
109eldm 4731 . . . 4 (𝑥 ∈ dom (𝐹𝐺) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦)
11 eqcom 2139 . . . . . . . 8 ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐺𝑥) = (𝐹𝑥))
12 fnbrfvb 5455 . . . . . . . 8 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥) = (𝐹𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1311, 12syl5bb 191 . . . . . . 7 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1413adantll 467 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1514necon3abid 2345 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ¬ 𝑥𝐺(𝐹𝑥)))
16 funfvex 5431 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
1716funfni 5218 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
1817adantlr 468 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ V)
19 breq2 3928 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑥𝐺𝑦𝑥𝐺(𝐹𝑥)))
2019notbid 656 . . . . . . 7 (𝑦 = (𝐹𝑥) → (¬ 𝑥𝐺𝑦 ↔ ¬ 𝑥𝐺(𝐹𝑥)))
2120ceqsexgv 2809 . . . . . 6 ((𝐹𝑥) ∈ V → (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹𝑥)))
2218, 21syl 14 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹𝑥)))
23 eqcom 2139 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
24 fnbrfvb 5455 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
2523, 24syl5bb 191 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2625adantlr 468 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2726anbi1d 460 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦)))
28 brdif 3976 . . . . . . 7 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦))
2927, 28syl6bbr 197 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ 𝑥(𝐹𝐺)𝑦))
3029exbidv 1797 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦))
3115, 22, 303bitr2rd 216 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦 𝑥(𝐹𝐺)𝑦 ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3210, 31syl5bb 191 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹𝐺) ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3332rabbi2dva 3279 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
348, 33eqtr3d 2172 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wne 2306  {crab 2418  Vcvv 2681  cdif 3063  cin 3065  wss 3066   class class class wbr 3924  dom cdm 4534   Fn wfn 5113  cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by:  fndmdifcom  5519
  Copyright terms: Public domain W3C validator