![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fndmeng | GIF version |
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fndmeng | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnex 5409 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
2 | fnfun 5021 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 2 | adantr 270 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → Fun 𝐹) |
4 | fundmeng 6346 | . . 3 ⊢ ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) | |
5 | 1, 3, 4 | syl2anc 403 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → dom 𝐹 ≈ 𝐹) |
6 | fndm 5023 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | breq1d 3797 | . . 3 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ≈ 𝐹 ↔ 𝐴 ≈ 𝐹)) |
8 | 7 | adantr 270 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → (dom 𝐹 ≈ 𝐹 ↔ 𝐴 ≈ 𝐹)) |
9 | 5, 8 | mpbid 145 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐴 ≈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 Vcvv 2602 class class class wbr 3787 dom cdm 4365 Fun wfun 4920 Fn wfn 4921 ≈ cen 6278 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3895 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-iun 3682 df-br 3788 df-opab 3842 df-mpt 3843 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-iota 4891 df-fun 4928 df-fn 4929 df-f 4930 df-f1 4931 df-fo 4932 df-f1o 4933 df-fv 4934 df-en 6281 |
This theorem is referenced by: sizefn 9813 |
Copyright terms: Public domain | W3C validator |