Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnn0ind GIF version

Theorem fnn0ind 8413
 Description: Induction on the integers from 0 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1 (𝑥 = 0 → (𝜑𝜓))
fnn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
fnn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fnn0ind.4 (𝑥 = 𝐾 → (𝜑𝜏))
fnn0ind.5 (𝑁 ∈ ℕ0𝜓)
fnn0ind.6 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
Assertion
Ref Expression
fnn0ind ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 8315 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
2 nn0z 8322 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 0z 8313 . . . . . . . 8 0 ∈ ℤ
4 fnn0ind.1 . . . . . . . . 9 (𝑥 = 0 → (𝜑𝜓))
5 fnn0ind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
6 fnn0ind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
7 fnn0ind.4 . . . . . . . . 9 (𝑥 = 𝐾 → (𝜑𝜏))
8 elnn0z 8315 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
9 fnn0ind.5 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝜓)
108, 9sylbir 129 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
11103adant1 933 . . . . . . . . 9 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝜓)
12 zre 8306 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
13 zre 8306 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 0re 7085 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
15 lelttr 7165 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 < 𝑁))
16 ltle 7164 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
17163adant2 934 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
1815, 17syld 44 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
1914, 18mp3an1 1230 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2012, 13, 19syl2an 277 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁))
2120ex 112 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑁 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → 0 ≤ 𝑁)))
2221com23 76 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → ((0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁)))
23223impib 1113 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → 0 ≤ 𝑁))
2423impcom 120 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → 0 ≤ 𝑁)
25 elnn0z 8315 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
2625anbi1i 439 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0𝑦 < 𝑁) ↔ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁))
27 fnn0ind.6 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))
28273expb 1116 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑦 < 𝑁)) → (𝜒𝜃))
298, 26, 28syl2anbr 280 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) ∧ ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁)) → (𝜒𝜃))
3029expcom 113 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) ∧ 𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
31303impa 1110 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝜒𝜃)))
3231expd 249 . . . . . . . . . . . 12 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁) → (𝑁 ∈ ℤ → (0 ≤ 𝑁 → (𝜒𝜃))))
3332impcom 120 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (0 ≤ 𝑁 → (𝜒𝜃)))
3424, 33mpd 13 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
3534adantll 453 . . . . . . . . 9 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < 𝑁)) → (𝜒𝜃))
364, 5, 6, 7, 11, 35fzind 8412 . . . . . . . 8 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
373, 36mpanl1 418 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁)) → 𝜏)
3837expcom 113 . . . . . 6 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℤ → 𝜏))
392, 38syl5 32 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
40393expa 1115 . . . 4 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ 𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
411, 40sylanb 272 . . 3 ((𝐾 ∈ ℕ0𝐾𝑁) → (𝑁 ∈ ℕ0𝜏))
4241impcom 120 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝐾𝑁)) → 𝜏)
43423impb 1111 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   ∧ w3a 896   = wceq 1259   ∈ wcel 1409   class class class wbr 3792  (class class class)co 5540  ℝcr 6946  0cc0 6947  1c1 6948   + caddc 6950   < clt 7119   ≤ cle 7120  ℕ0cn0 8239  ℤcz 8302 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303 This theorem is referenced by:  nn0seqcvgd  10263
 Copyright terms: Public domain W3C validator