Step | Hyp | Ref
| Expression |
1 | | offval.1 |
. . . . 5
⊢ (φ → 𝐹 Fn A) |
2 | | offval.2 |
. . . . 5
⊢ (φ → 𝐺 Fn B) |
3 | | offval.3 |
. . . . 5
⊢ (φ → A ∈ 𝑉) |
4 | | offval.4 |
. . . . 5
⊢ (φ → B ∈ 𝑊) |
5 | | offval.5 |
. . . . 5
⊢ (A ∩ B) =
𝑆 |
6 | | eqidd 2038 |
. . . . 5
⊢ ((φ ∧ x ∈ A) → (𝐹‘x) = (𝐹‘x)) |
7 | | eqidd 2038 |
. . . . 5
⊢ ((φ ∧ x ∈ B) → (𝐺‘x) = (𝐺‘x)) |
8 | 1, 2, 3, 4, 5, 6, 7 | offval 5661 |
. . . 4
⊢ (φ → (𝐹 ∘𝑓 𝑅𝐺) = (x
∈ 𝑆 ↦ ((𝐹‘x)𝑅(𝐺‘x)))) |
9 | 8 | fveq1d 5123 |
. . 3
⊢ (φ → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = ((x
∈ 𝑆 ↦ ((𝐹‘x)𝑅(𝐺‘x)))‘𝑋)) |
10 | 9 | adantr 261 |
. 2
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = ((x
∈ 𝑆 ↦ ((𝐹‘x)𝑅(𝐺‘x)))‘𝑋)) |
11 | | simpr 103 |
. . 3
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
12 | | ofval.8 |
. . . . 5
⊢ (φ → 𝑅 Fn (𝑈 × 𝑉)) |
13 | 12 | adantr 261 |
. . . 4
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → 𝑅 Fn (𝑈 × 𝑉)) |
14 | | ofval.9 |
. . . . . 6
⊢ (φ → 𝐶 ∈ 𝑈) |
15 | 14 | adantr 261 |
. . . . 5
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → 𝐶 ∈ 𝑈) |
16 | | inss1 3151 |
. . . . . . . . 9
⊢ (A ∩ B)
⊆ A |
17 | 5, 16 | eqsstr3i 2970 |
. . . . . . . 8
⊢ 𝑆 ⊆ A |
18 | 17 | sseli 2935 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈
A) |
19 | | ofval.6 |
. . . . . . 7
⊢ ((φ ∧ 𝑋 ∈ A) →
(𝐹‘𝑋) = 𝐶) |
20 | 18, 19 | sylan2 270 |
. . . . . 6
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
21 | 20 | eleq1d 2103 |
. . . . 5
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋) ∈ 𝑈 ↔ 𝐶 ∈ 𝑈)) |
22 | 15, 21 | mpbird 156 |
. . . 4
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ 𝑈) |
23 | | ofval.10 |
. . . . . 6
⊢ (φ → 𝐷 ∈ 𝑉) |
24 | 23 | adantr 261 |
. . . . 5
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → 𝐷 ∈ 𝑉) |
25 | | inss2 3152 |
. . . . . . . . 9
⊢ (A ∩ B)
⊆ B |
26 | 5, 25 | eqsstr3i 2970 |
. . . . . . . 8
⊢ 𝑆 ⊆ B |
27 | 26 | sseli 2935 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈
B) |
28 | | ofval.7 |
. . . . . . 7
⊢ ((φ ∧ 𝑋 ∈ B) →
(𝐺‘𝑋) = 𝐷) |
29 | 27, 28 | sylan2 270 |
. . . . . 6
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
30 | 29 | eleq1d 2103 |
. . . . 5
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → ((𝐺‘𝑋) ∈ 𝑉 ↔ 𝐷 ∈ 𝑉)) |
31 | 24, 30 | mpbird 156 |
. . . 4
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) ∈ 𝑉) |
32 | | fnovex 5481 |
. . . 4
⊢ ((𝑅 Fn (𝑈 × 𝑉) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ (𝐺‘𝑋) ∈ 𝑉) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈
V) |
33 | 13, 22, 31, 32 | syl3anc 1134 |
. . 3
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈
V) |
34 | | fveq2 5121 |
. . . . 5
⊢ (x = 𝑋 → (𝐹‘x) = (𝐹‘𝑋)) |
35 | | fveq2 5121 |
. . . . 5
⊢ (x = 𝑋 → (𝐺‘x) = (𝐺‘𝑋)) |
36 | 34, 35 | oveq12d 5473 |
. . . 4
⊢ (x = 𝑋 → ((𝐹‘x)𝑅(𝐺‘x)) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
37 | | eqid 2037 |
. . . 4
⊢ (x ∈ 𝑆 ↦ ((𝐹‘x)𝑅(𝐺‘x))) = (x ∈ 𝑆 ↦ ((𝐹‘x)𝑅(𝐺‘x))) |
38 | 36, 37 | fvmptg 5191 |
. . 3
⊢ ((𝑋 ∈ 𝑆 ∧ ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈ V)
→ ((x ∈ 𝑆 ↦ ((𝐹‘x)𝑅(𝐺‘x)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
39 | 11, 33, 38 | syl2anc 391 |
. 2
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → ((x ∈ 𝑆 ↦ ((𝐹‘x)𝑅(𝐺‘x)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
40 | 20, 29 | oveq12d 5473 |
. 2
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) = (𝐶𝑅𝐷)) |
41 | 10, 39, 40 | 3eqtrd 2073 |
1
⊢ ((φ ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |