ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel GIF version

Theorem fnrel 5025
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5024 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 4947 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 14 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Rel wrel 4378  Fun wfun 4924   Fn wfn 4925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103
This theorem depends on definitions:  df-bi 114  df-fun 4932  df-fn 4933
This theorem is referenced by:  fnbr  5029  fnresdm  5036  fn0  5046  frel  5077  fcoi2  5099  f1rel  5123  f1ocnv  5167  dffn5im  5247  fnex  5411  fnexALT  5768
  Copyright terms: Public domain W3C validator