![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnresi | GIF version |
Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 4982 | . . 3 ⊢ Fun I | |
2 | funres 4991 | . . 3 ⊢ (Fun I → Fun ( I ↾ 𝐴)) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ Fun ( I ↾ 𝐴) |
4 | dmresi 4711 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
5 | df-fn 4955 | . 2 ⊢ (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴)) | |
6 | 3, 4, 5 | mpbir2an 884 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 I cid 4071 dom cdm 4391 ↾ cres 4393 Fun wfun 4946 Fn wfn 4947 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 df-opab 3860 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-res 4403 df-fun 4954 df-fn 4955 |
This theorem is referenced by: f1oi 5215 iordsmo 5966 |
Copyright terms: Public domain | W3C validator |