ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st GIF version

Theorem fo1st 6048
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2684 . . . . . 6 𝑥 ∈ V
21snex 4104 . . . . 5 {𝑥} ∈ V
32dmex 4800 . . . 4 dom {𝑥} ∈ V
43uniex 4354 . . 3 dom {𝑥} ∈ V
5 df-1st 6031 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
64, 5fnmpti 5246 . 2 1st Fn V
75rnmpt 4782 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
8 vex 2684 . . . . 5 𝑦 ∈ V
98, 8opex 4146 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op1sta 5015 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2141 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
12 sneq 3533 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312dmeqd 4736 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413unieqd 3742 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1514eqeq2d 2149 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = dom {𝑥} ↔ 𝑦 = dom {⟨𝑦, 𝑦⟩}))
1615rspcev 2784 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
179, 11, 16mp2an 422 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
188, 172th 173 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1918abbi2i 2252 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
207, 19eqtr4i 2161 . 2 ran 1st = V
21 df-fo 5124 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
226, 20, 21mpbir2an 926 1 1st :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1331  wcel 1480  {cab 2123  wrex 2415  Vcvv 2681  {csn 3522  cop 3525   cuni 3731  dom cdm 4534  ran crn 4535   Fn wfn 5113  ontowfo 5116  1st c1st 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-fun 5120  df-fn 5121  df-fo 5124  df-1st 6031
This theorem is referenced by:  1stcof  6054  1stexg  6058  df1st2  6109  1stconst  6111  algrflem  6119  algrflemg  6120  suplocexprlemell  7514  suplocexprlem2b  7515  suplocexprlemlub  7525  upxp  12430  uptx  12432  cnmpt1st  12446
  Copyright terms: Public domain W3C validator