ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco2 GIF version

Theorem foco2 5375
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
foco2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)

Proof of Theorem foco2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 939 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵𝐶)
2 foelrn 5374 . . . . . 6 (((𝐹𝐺):𝐴onto𝐶𝑦𝐶) → ∃𝑧𝐴 𝑦 = ((𝐹𝐺)‘𝑧))
3 ffvelrn 5357 . . . . . . . . . 10 ((𝐺:𝐴𝐵𝑧𝐴) → (𝐺𝑧) ∈ 𝐵)
43adantll 460 . . . . . . . . 9 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ 𝐵)
5 fvco3 5301 . . . . . . . . . 10 ((𝐺:𝐴𝐵𝑧𝐴) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
65adantll 460 . . . . . . . . 9 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
7 fveq2 5234 . . . . . . . . . . 11 (𝑥 = (𝐺𝑧) → (𝐹𝑥) = (𝐹‘(𝐺𝑧)))
87eqeq2d 2094 . . . . . . . . . 10 (𝑥 = (𝐺𝑧) → (((𝐹𝐺)‘𝑧) = (𝐹𝑥) ↔ ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧))))
98rspcev 2711 . . . . . . . . 9 (((𝐺𝑧) ∈ 𝐵 ∧ ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧))) → ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥))
104, 6, 9syl2anc 403 . . . . . . . 8 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥))
11 eqeq1 2089 . . . . . . . . 9 (𝑦 = ((𝐹𝐺)‘𝑧) → (𝑦 = (𝐹𝑥) ↔ ((𝐹𝐺)‘𝑧) = (𝐹𝑥)))
1211rexbidv 2375 . . . . . . . 8 (𝑦 = ((𝐹𝐺)‘𝑧) → (∃𝑥𝐵 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥)))
1310, 12syl5ibrcom 155 . . . . . . 7 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → (𝑦 = ((𝐹𝐺)‘𝑧) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
1413rexlimdva 2483 . . . . . 6 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (∃𝑧𝐴 𝑦 = ((𝐹𝐺)‘𝑧) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
152, 14syl5 32 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (((𝐹𝐺):𝐴onto𝐶𝑦𝐶) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
1615impl 372 . . . 4 ((((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ (𝐹𝐺):𝐴onto𝐶) ∧ 𝑦𝐶) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
1716ralrimiva 2440 . . 3 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ (𝐹𝐺):𝐴onto𝐶) → ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥))
18173impa 1134 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥))
19 dffo3 5371 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥)))
201, 18, 19sylanbrc 408 1 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  wral 2353  wrex 2354  ccom 4398  wf 4951  ontowfo 4953  cfv 4955
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3994
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2613  df-sbc 2826  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-mpt 3862  df-id 4078  df-xp 4400  df-rel 4401  df-cnv 4402  df-co 4403  df-dm 4404  df-rn 4405  df-res 4406  df-ima 4407  df-iota 4920  df-fun 4957  df-fn 4958  df-f 4959  df-fo 4961  df-fv 4963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator