Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fof GIF version

Theorem fof 5134
 Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fof (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)

Proof of Theorem fof
StepHypRef Expression
1 eqimss 3025 . . 3 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
21anim2i 328 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
3 df-fo 4936 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
4 df-f 4934 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
52, 3, 43imtr4i 194 1 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259   ⊆ wss 2945  ran crn 4374   Fn wfn 4925  ⟶wf 4926  –onto→wfo 4928 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-in 2952  df-ss 2959  df-f 4934  df-fo 4936 This theorem is referenced by:  fofun  5135  fofn  5136  dffo2  5138  foima  5139  resdif  5176  ffoss  5186  fconstfvm  5407  cocan2  5456  foeqcnvco  5458  fornex  5770  algrflem  5878  algrflemg  5879  tposf2  5914  ssdomg  6289  fopwdom  6341
 Copyright terms: Public domain W3C validator