ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fopwdom GIF version

Theorem fopwdom 6723
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fopwdom ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)

Proof of Theorem fopwdom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 4887 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
2 dfdm4 4726 . . . . . . 7 dom 𝐹 = ran 𝐹
3 fof 5340 . . . . . . . 8 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
4 fdm 5273 . . . . . . . 8 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
53, 4syl 14 . . . . . . 7 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
62, 5syl5eqr 2184 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐴)
71, 6sseqtrid 3142 . . . . 5 (𝐹:𝐴onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
87adantl 275 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝐹𝑎) ⊆ 𝐴)
9 cnvexg 5071 . . . . . 6 (𝐹 ∈ V → 𝐹 ∈ V)
109adantr 274 . . . . 5 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐹 ∈ V)
11 imaexg 4888 . . . . 5 (𝐹 ∈ V → (𝐹𝑎) ∈ V)
12 elpwg 3513 . . . . 5 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
1310, 11, 123syl 17 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
148, 13mpbird 166 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
1514a1d 22 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝑎 ∈ 𝒫 𝐵 → (𝐹𝑎) ∈ 𝒫 𝐴))
16 imaeq2 4872 . . . . . . 7 ((𝐹𝑎) = (𝐹𝑏) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
1716adantl 275 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
18 simpllr 523 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴onto𝐵)
19 simplrl 524 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 ∈ 𝒫 𝐵)
2019elpwid 3516 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐵)
21 foimacnv 5378 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2218, 20, 21syl2anc 408 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
23 simplrr 525 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏 ∈ 𝒫 𝐵)
2423elpwid 3516 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐵)
25 foimacnv 5378 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑏𝐵) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2618, 24, 25syl2anc 408 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2717, 22, 263eqtr3d 2178 . . . . 5 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 = 𝑏)
2827ex 114 . . . 4 (((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
29 imaeq2 4872 . . . 4 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
3028, 29impbid1 141 . . 3 (((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
3130ex 114 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → ((𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏)))
32 rnexg 4799 . . . . 5 (𝐹 ∈ V → ran 𝐹 ∈ V)
33 forn 5343 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
3433eleq1d 2206 . . . . 5 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
3532, 34syl5ibcom 154 . . . 4 (𝐹 ∈ V → (𝐹:𝐴onto𝐵𝐵 ∈ V))
3635imp 123 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
37 pwexg 4099 . . 3 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
3836, 37syl 14 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ∈ V)
39 dmfex 5307 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴𝐵) → 𝐴 ∈ V)
403, 39sylan2 284 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐴 ∈ V)
41 pwexg 4099 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
4240, 41syl 14 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐴 ∈ V)
4315, 31, 38, 42dom3d 6661 1 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2681  wss 3066  𝒫 cpw 3505   class class class wbr 3924  ccnv 4533  dom cdm 4534  ran crn 4535  cima 4537  wf 5114  ontowfo 5116  cdom 6626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-fv 5126  df-dom 6629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator