ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foun GIF version

Theorem foun 5379
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
foun (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))

Proof of Theorem foun
StepHypRef Expression
1 fofn 5342 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 5342 . . . 4 (𝐺:𝐶onto𝐷𝐺 Fn 𝐶)
31, 2anim12i 336 . . 3 ((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) → (𝐹 Fn 𝐴𝐺 Fn 𝐶))
4 fnun 5224 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
53, 4sylan 281 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
6 rnun 4942 . . 3 ran (𝐹𝐺) = (ran 𝐹 ∪ ran 𝐺)
7 forn 5343 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87ad2antrr 479 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐹 = 𝐵)
9 forn 5343 . . . . 5 (𝐺:𝐶onto𝐷 → ran 𝐺 = 𝐷)
109ad2antlr 480 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐺 = 𝐷)
118, 10uneq12d 3226 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵𝐷))
126, 11syl5eq 2182 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran (𝐹𝐺) = (𝐵𝐷))
13 df-fo 5124 . 2 ((𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐶) ∧ ran (𝐹𝐺) = (𝐵𝐷)))
145, 12, 13sylanbrc 413 1 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  cun 3064  cin 3065  c0 3358  ran crn 4535   Fn wfn 5113  ontowfo 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-id 4210  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-fun 5120  df-fn 5121  df-f 5122  df-fo 5124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator