ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec0g GIF version

Theorem frec0g 6014
Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
Assertion
Ref Expression
frec0g (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem frec0g
Dummy variables 𝑔 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dm0 4577 . . . . . . . . . 10 dom ∅ = ∅
21biantrur 291 . . . . . . . . 9 (𝑥𝐴 ↔ (dom ∅ = ∅ ∧ 𝑥𝐴))
3 vex 2577 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
4 nsuceq0g 4183 . . . . . . . . . . . . . . . 16 (𝑚 ∈ V → suc 𝑚 ≠ ∅)
53, 4ax-mp 7 . . . . . . . . . . . . . . 15 suc 𝑚 ≠ ∅
65nesymi 2266 . . . . . . . . . . . . . 14 ¬ ∅ = suc 𝑚
71eqeq1i 2063 . . . . . . . . . . . . . 14 (dom ∅ = suc 𝑚 ↔ ∅ = suc 𝑚)
86, 7mtbir 606 . . . . . . . . . . . . 13 ¬ dom ∅ = suc 𝑚
98intnanr 850 . . . . . . . . . . . 12 ¬ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))
109a1i 9 . . . . . . . . . . 11 (𝑚 ∈ ω → ¬ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))))
1110nrex 2428 . . . . . . . . . 10 ¬ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))
1211biorfi 675 . . . . . . . . 9 ((dom ∅ = ∅ ∧ 𝑥𝐴) ↔ ((dom ∅ = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
13 orcom 657 . . . . . . . . 9 (((dom ∅ = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴)))
142, 12, 133bitri 199 . . . . . . . 8 (𝑥𝐴 ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴)))
1514abbii 2169 . . . . . . 7 {𝑥𝑥𝐴} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))}
16 abid2 2174 . . . . . . 7 {𝑥𝑥𝐴} = 𝐴
1715, 16eqtr3i 2078 . . . . . 6 {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} = 𝐴
18 elex 2583 . . . . . 6 (𝐴𝑉𝐴 ∈ V)
1917, 18syl5eqel 2140 . . . . 5 (𝐴𝑉 → {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V)
20 0ex 3912 . . . . . . 7 ∅ ∈ V
21 dmeq 4563 . . . . . . . . . . . . 13 (𝑔 = ∅ → dom 𝑔 = dom ∅)
2221eqeq1d 2064 . . . . . . . . . . . 12 (𝑔 = ∅ → (dom 𝑔 = suc 𝑚 ↔ dom ∅ = suc 𝑚))
23 fveq1 5205 . . . . . . . . . . . . . 14 (𝑔 = ∅ → (𝑔𝑚) = (∅‘𝑚))
2423fveq2d 5210 . . . . . . . . . . . . 13 (𝑔 = ∅ → (𝐹‘(𝑔𝑚)) = (𝐹‘(∅‘𝑚)))
2524eleq2d 2123 . . . . . . . . . . . 12 (𝑔 = ∅ → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(∅‘𝑚))))
2622, 25anbi12d 450 . . . . . . . . . . 11 (𝑔 = ∅ → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
2726rexbidv 2344 . . . . . . . . . 10 (𝑔 = ∅ → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚)))))
2821eqeq1d 2064 . . . . . . . . . . 11 (𝑔 = ∅ → (dom 𝑔 = ∅ ↔ dom ∅ = ∅))
2928anbi1d 446 . . . . . . . . . 10 (𝑔 = ∅ → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom ∅ = ∅ ∧ 𝑥𝐴)))
3027, 29orbi12d 717 . . . . . . . . 9 (𝑔 = ∅ → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))))
3130abbidv 2171 . . . . . . . 8 (𝑔 = ∅ → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
32 eqid 2056 . . . . . . . 8 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3331, 32fvmptg 5276 . . . . . . 7 ((∅ ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V) → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
3420, 33mpan 408 . . . . . 6 ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = {𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))})
3534, 17syl6eq 2104 . . . . 5 ({𝑥 ∣ (∃𝑚 ∈ ω (dom ∅ = suc 𝑚𝑥 ∈ (𝐹‘(∅‘𝑚))) ∨ (dom ∅ = ∅ ∧ 𝑥𝐴))} ∈ V → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = 𝐴)
3619, 35syl 14 . . . 4 (𝐴𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) = 𝐴)
3736, 18eqeltrd 2130 . . 3 (𝐴𝑉 → ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V)
38 df-frec 6009 . . . . . 6 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
3938fveq1i 5207 . . . . 5 (frec(𝐹, 𝐴)‘∅) = ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅)
40 peano1 4345 . . . . . 6 ∅ ∈ ω
41 fvres 5226 . . . . . 6 (∅ ∈ ω → ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅))
4240, 41ax-mp 7 . . . . 5 ((recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅)
4339, 42eqtri 2076 . . . 4 (frec(𝐹, 𝐴)‘∅) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅)
44 eqid 2056 . . . . 5 recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
4544tfr0 5968 . . . 4 (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V → (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4643, 45syl5eq 2100 . . 3 (((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅) ∈ V → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4737, 46syl 14 . 2 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})‘∅))
4847, 36eqtrd 2088 1 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wo 639   = wceq 1259  wcel 1409  {cab 2042  wne 2220  wrex 2324  Vcvv 2574  c0 3252  cmpt 3846  suc csuc 4130  ωcom 4341  dom cdm 4373  cres 4375  cfv 4930  recscrecs 5950  freccfrec 6008
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-res 4385  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938  df-recs 5951  df-frec 6009
This theorem is referenced by:  frecrdg  6023  freccl  6024  frec2uz0d  9349  frec2uzrdg  9359  frecuzrdg0  9364
  Copyright terms: Public domain W3C validator