ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzltd GIF version

Theorem frec2uzltd 10176
Description: Less-than relation for 𝐺 (see frec2uz0d 10172). (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
frec2uzltd.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzltd (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzltd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzltd.b . 2 (𝜑𝐵 ∈ ω)
2 eleq2 2203 . . . . 5 (𝑧 = ∅ → (𝐴𝑧𝐴 ∈ ∅))
3 fveq2 5421 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
43breq2d 3941 . . . . 5 (𝑧 = ∅ → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘∅)))
52, 4imbi12d 233 . . . 4 (𝑧 = ∅ → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))))
65imbi2d 229 . . 3 (𝑧 = ∅ → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))))
7 eleq2 2203 . . . . 5 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
8 fveq2 5421 . . . . . 6 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
98breq2d 3941 . . . . 5 (𝑧 = 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝑦)))
107, 9imbi12d 233 . . . 4 (𝑧 = 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))))
1110imbi2d 229 . . 3 (𝑧 = 𝑦 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))))
12 eleq2 2203 . . . . 5 (𝑧 = suc 𝑦 → (𝐴𝑧𝐴 ∈ suc 𝑦))
13 fveq2 5421 . . . . . 6 (𝑧 = suc 𝑦 → (𝐺𝑧) = (𝐺‘suc 𝑦))
1413breq2d 3941 . . . . 5 (𝑧 = suc 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
1512, 14imbi12d 233 . . . 4 (𝑧 = suc 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
1615imbi2d 229 . . 3 (𝑧 = suc 𝑦 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
17 eleq2 2203 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
18 fveq2 5421 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
1918breq2d 3941 . . . . 5 (𝑧 = 𝐵 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝐵)))
2017, 19imbi12d 233 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
2120imbi2d 229 . . 3 (𝑧 = 𝐵 → ((𝜑 → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))))
22 noel 3367 . . . . 5 ¬ 𝐴 ∈ ∅
2322pm2.21i 635 . . . 4 (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))
2423a1i 9 . . 3 (𝜑 → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))
25 id 19 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))
26 fveq2 5421 . . . . . . . 8 (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦))
2726a1i 9 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦)))
2825, 27orim12d 775 . . . . . 6 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → ((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
29 elsuc2g 4327 . . . . . . . . 9 (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
3029bicomd 140 . . . . . . . 8 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
3130adantr 274 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
32 frec2uz.1 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
3332adantl 275 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ)
34 frec2uz.2 . . . . . . . . . 10 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
35 simpl 108 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝑦 ∈ ω)
3633, 34, 35frec2uzsucd 10174 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑦) = ((𝐺𝑦) + 1))
3736breq2d 3941 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
38 frec2uzzd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ω)
3938adantl 275 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝜑) → 𝐴 ∈ ω)
4033, 34, 39frec2uzuzd 10175 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝐴) ∈ (ℤ𝐶))
4133, 34, 35frec2uzuzd 10175 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝑦) ∈ (ℤ𝐶))
42 eluzelz 9335 . . . . . . . . . 10 ((𝐺𝐴) ∈ (ℤ𝐶) → (𝐺𝐴) ∈ ℤ)
43 eluzelz 9335 . . . . . . . . . 10 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
44 zleltp1 9109 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4542, 43, 44syl2an 287 . . . . . . . . 9 (((𝐺𝐴) ∈ (ℤ𝐶) ∧ (𝐺𝑦) ∈ (ℤ𝐶)) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4640, 41, 45syl2anc 408 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4733, 34, 39frec2uzzd 10173 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝐴) ∈ ℤ)
4833, 34, 35frec2uzzd 10173 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝜑) → (𝐺𝑦) ∈ ℤ)
49 zleloe 9101 . . . . . . . . 9 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
5047, 48, 49syl2anc 408 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
5137, 46, 503bitr2rd 216 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝜑) → (((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦)) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
5231, 51imbi12d 233 . . . . . 6 ((𝑦 ∈ ω ∧ 𝜑) → (((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5328, 52syl5ib 153 . . . . 5 ((𝑦 ∈ ω ∧ 𝜑) → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5453ex 114 . . . 4 (𝑦 ∈ ω → (𝜑 → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
5554a2d 26 . . 3 (𝑦 ∈ ω → ((𝜑 → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))) → (𝜑 → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
566, 11, 16, 21, 24, 55finds 4514 . 2 (𝐵 ∈ ω → (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
571, 56mpcom 36 1 (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  c0 3363   class class class wbr 3929  cmpt 3989  suc csuc 4287  ωcom 4504  cfv 5123  (class class class)co 5774  freccfrec 6287  1c1 7621   + caddc 7623   < clt 7800  cle 7801  cz 9054  cuz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327
This theorem is referenced by:  frec2uzlt2d  10177  frec2uzf1od  10179  ennnfonelemex  11927  ennnfonelemnn0  11935
  Copyright terms: Public domain W3C validator