Step | Hyp | Ref
| Expression |
1 | | uzrdg.b |
. 2
⊢ (φ → B ∈
𝜔) |
2 | | fveq2 5121 |
. . . . 5
⊢ (z = B →
(𝑅‘z) = (𝑅‘B)) |
3 | | fveq2 5121 |
. . . . . 6
⊢ (z = B →
(𝐺‘z) = (𝐺‘B)) |
4 | 2 | fveq2d 5125 |
. . . . . 6
⊢ (z = B →
(2nd ‘(𝑅‘z)) = (2nd ‘(𝑅‘B))) |
5 | 3, 4 | opeq12d 3548 |
. . . . 5
⊢ (z = B →
〈(𝐺‘z), (2nd ‘(𝑅‘z))〉 = 〈(𝐺‘B), (2nd ‘(𝑅‘B))〉) |
6 | 2, 5 | eqeq12d 2051 |
. . . 4
⊢ (z = B →
((𝑅‘z) = 〈(𝐺‘z), (2nd ‘(𝑅‘z))〉 ↔ (𝑅‘B) = 〈(𝐺‘B), (2nd ‘(𝑅‘B))〉)) |
7 | 6 | imbi2d 219 |
. . 3
⊢ (z = B →
((φ → (𝑅‘z) = 〈(𝐺‘z), (2nd ‘(𝑅‘z))〉) ↔ (φ → (𝑅‘B) = 〈(𝐺‘B), (2nd ‘(𝑅‘B))〉))) |
8 | | fveq2 5121 |
. . . . 5
⊢ (z = ∅ → (𝑅‘z) = (𝑅‘∅)) |
9 | | fveq2 5121 |
. . . . . 6
⊢ (z = ∅ → (𝐺‘z) = (𝐺‘∅)) |
10 | 8 | fveq2d 5125 |
. . . . . 6
⊢ (z = ∅ → (2nd ‘(𝑅‘z)) = (2nd ‘(𝑅‘∅))) |
11 | 9, 10 | opeq12d 3548 |
. . . . 5
⊢ (z = ∅ → 〈(𝐺‘z), (2nd ‘(𝑅‘z))〉 = 〈(𝐺‘∅), (2nd
‘(𝑅‘∅))〉) |
12 | 8, 11 | eqeq12d 2051 |
. . . 4
⊢ (z = ∅ → ((𝑅‘z) = 〈(𝐺‘z), (2nd ‘(𝑅‘z))〉 ↔ (𝑅‘∅) = 〈(𝐺‘∅), (2nd
‘(𝑅‘∅))〉)) |
13 | | fveq2 5121 |
. . . . 5
⊢ (z = v →
(𝑅‘z) = (𝑅‘v)) |
14 | | fveq2 5121 |
. . . . . 6
⊢ (z = v →
(𝐺‘z) = (𝐺‘v)) |
15 | 13 | fveq2d 5125 |
. . . . . 6
⊢ (z = v →
(2nd ‘(𝑅‘z)) = (2nd ‘(𝑅‘v))) |
16 | 14, 15 | opeq12d 3548 |
. . . . 5
⊢ (z = v →
〈(𝐺‘z), (2nd ‘(𝑅‘z))〉 = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) |
17 | 13, 16 | eqeq12d 2051 |
. . . 4
⊢ (z = v →
((𝑅‘z) = 〈(𝐺‘z), (2nd ‘(𝑅‘z))〉 ↔ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉)) |
18 | | fveq2 5121 |
. . . . 5
⊢ (z = suc v →
(𝑅‘z) = (𝑅‘suc v)) |
19 | | fveq2 5121 |
. . . . . 6
⊢ (z = suc v →
(𝐺‘z) = (𝐺‘suc v)) |
20 | 18 | fveq2d 5125 |
. . . . . 6
⊢ (z = suc v →
(2nd ‘(𝑅‘z)) = (2nd ‘(𝑅‘suc v))) |
21 | 19, 20 | opeq12d 3548 |
. . . . 5
⊢ (z = suc v →
〈(𝐺‘z), (2nd ‘(𝑅‘z))〉 = 〈(𝐺‘suc v), (2nd ‘(𝑅‘suc v))〉) |
22 | 18, 21 | eqeq12d 2051 |
. . . 4
⊢ (z = suc v →
((𝑅‘z) = 〈(𝐺‘z), (2nd ‘(𝑅‘z))〉 ↔ (𝑅‘suc v) = 〈(𝐺‘suc v), (2nd ‘(𝑅‘suc v))〉)) |
23 | | uzrdg.2 |
. . . . . . 7
⊢ 𝑅 = frec((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉) |
24 | 23 | fveq1i 5122 |
. . . . . 6
⊢ (𝑅‘∅) =
(frec((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘∅) |
25 | | frec2uz.1 |
. . . . . . . 8
⊢ (φ → 𝐶 ∈
ℤ) |
26 | | uzrdg.a |
. . . . . . . 8
⊢ (φ → A ∈ 𝑆) |
27 | | opexg 3955 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧
A ∈ 𝑆) → 〈𝐶, A〉 ∈
V) |
28 | 25, 26, 27 | syl2anc 391 |
. . . . . . 7
⊢ (φ → 〈𝐶, A〉 ∈
V) |
29 | | frec0g 5922 |
. . . . . . 7
⊢
(〈𝐶, A〉 ∈ V →
(frec((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘∅) = 〈𝐶, A〉) |
30 | 28, 29 | syl 14 |
. . . . . 6
⊢ (φ → (frec((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘∅) = 〈𝐶, A〉) |
31 | 24, 30 | syl5eq 2081 |
. . . . 5
⊢ (φ → (𝑅‘∅) = 〈𝐶, A〉) |
32 | | frec2uz.2 |
. . . . . . 7
⊢ 𝐺 = frec((x ∈ ℤ
↦ (x + 1)), 𝐶) |
33 | 25, 32 | frec2uz0d 8866 |
. . . . . 6
⊢ (φ → (𝐺‘∅) = 𝐶) |
34 | 31 | fveq2d 5125 |
. . . . . . 7
⊢ (φ → (2nd ‘(𝑅‘∅)) =
(2nd ‘〈𝐶, A〉)) |
35 | | uzid 8263 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
(ℤ≥‘𝐶)) |
36 | 25, 35 | syl 14 |
. . . . . . . 8
⊢ (φ → 𝐶 ∈
(ℤ≥‘𝐶)) |
37 | | op2ndg 5720 |
. . . . . . . 8
⊢ ((𝐶 ∈ (ℤ≥‘𝐶) ∧
A ∈ 𝑆) → (2nd
‘〈𝐶, A〉) = A) |
38 | 36, 26, 37 | syl2anc 391 |
. . . . . . 7
⊢ (φ → (2nd ‘〈𝐶, A〉) = A) |
39 | 34, 38 | eqtrd 2069 |
. . . . . 6
⊢ (φ → (2nd ‘(𝑅‘∅)) = A) |
40 | 33, 39 | opeq12d 3548 |
. . . . 5
⊢ (φ → 〈(𝐺‘∅), (2nd
‘(𝑅‘∅))〉 = 〈𝐶, A〉) |
41 | 31, 40 | eqtr4d 2072 |
. . . 4
⊢ (φ → (𝑅‘∅) = 〈(𝐺‘∅), (2nd
‘(𝑅‘∅))〉) |
42 | | zex 8030 |
. . . . . . . . . . . . . . . 16
⊢ ℤ
∈ V |
43 | | uzssz 8268 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘𝐶) ⊆ ℤ |
44 | 42, 43 | ssexi 3886 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝐶) ∈
V |
45 | 44 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧ v ∈ 𝜔)
→ (ℤ≥‘𝐶) ∈
V) |
46 | | uzrdg.s |
. . . . . . . . . . . . . . 15
⊢ (φ → 𝑆 ∈ 𝑉) |
47 | 46 | adantr 261 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧ v ∈ 𝜔)
→ 𝑆 ∈ 𝑉) |
48 | | mpt2exga 5777 |
. . . . . . . . . . . . . 14
⊢
(((ℤ≥‘𝐶) ∈ V
∧ 𝑆 ∈ 𝑉) → (x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉) ∈
V) |
49 | 45, 47, 48 | syl2anc 391 |
. . . . . . . . . . . . 13
⊢ ((φ ∧ v ∈ 𝜔)
→ (x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉) ∈
V) |
50 | | vex 2554 |
. . . . . . . . . . . . . 14
⊢ z ∈
V |
51 | 50 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((φ ∧ v ∈ 𝜔)
→ z ∈ V) |
52 | | fvexg 5137 |
. . . . . . . . . . . . 13
⊢
(((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉) ∈ V
∧ z ∈ V) → ((x
∈ (ℤ≥‘𝐶), y ∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘z) ∈
V) |
53 | 49, 51, 52 | syl2anc 391 |
. . . . . . . . . . . 12
⊢ ((φ ∧ v ∈ 𝜔)
→ ((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘z) ∈
V) |
54 | 53 | alrimiv 1751 |
. . . . . . . . . . 11
⊢ ((φ ∧ v ∈ 𝜔)
→ ∀z((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘z) ∈
V) |
55 | 28 | adantr 261 |
. . . . . . . . . . 11
⊢ ((φ ∧ v ∈ 𝜔)
→ 〈𝐶, A〉 ∈
V) |
56 | | simpr 103 |
. . . . . . . . . . 11
⊢ ((φ ∧ v ∈ 𝜔)
→ v ∈ 𝜔) |
57 | | frecsuc 5930 |
. . . . . . . . . . 11
⊢ ((∀z((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘z) ∈ V ∧ 〈𝐶, A〉 ∈ V ∧ v ∈ 𝜔) → (frec((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘suc v) = ((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘(frec((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘v))) |
58 | 54, 55, 56, 57 | syl3anc 1134 |
. . . . . . . . . 10
⊢ ((φ ∧ v ∈ 𝜔)
→ (frec((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘suc v) = ((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘(frec((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘v))) |
59 | 23 | fveq1i 5122 |
. . . . . . . . . 10
⊢ (𝑅‘suc v) = (frec((x
∈ (ℤ≥‘𝐶), y ∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘suc v) |
60 | 23 | fveq1i 5122 |
. . . . . . . . . . 11
⊢ (𝑅‘v) = (frec((x
∈ (ℤ≥‘𝐶), y ∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘v) |
61 | 60 | fveq2i 5124 |
. . . . . . . . . 10
⊢
((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘(𝑅‘v)) = ((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘(frec((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉), 〈𝐶, A〉)‘v)) |
62 | 58, 59, 61 | 3eqtr4g 2094 |
. . . . . . . . 9
⊢ ((φ ∧ v ∈ 𝜔)
→ (𝑅‘suc
v) = ((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘(𝑅‘v))) |
63 | 62 | adantr 261 |
. . . . . . . 8
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → (𝑅‘suc v) = ((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘(𝑅‘v))) |
64 | | fveq2 5121 |
. . . . . . . . 9
⊢ ((𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉 → ((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘(𝑅‘v)) = ((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘〈(𝐺‘v), (2nd ‘(𝑅‘v))〉)) |
65 | | df-ov 5458 |
. . . . . . . . . 10
⊢ ((𝐺‘v)(x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)(2nd ‘(𝑅‘v))) = ((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) |
66 | 25 | adantr 261 |
. . . . . . . . . . . 12
⊢ ((φ ∧ v ∈ 𝜔)
→ 𝐶 ∈ ℤ) |
67 | 66, 32, 56 | frec2uzuzd 8869 |
. . . . . . . . . . 11
⊢ ((φ ∧ v ∈ 𝜔)
→ (𝐺‘v) ∈
(ℤ≥‘𝐶)) |
68 | | uzrdg.f |
. . . . . . . . . . . . 13
⊢ ((φ ∧
(x ∈
(ℤ≥‘𝐶) ∧
y ∈ 𝑆)) → (x𝐹y) ∈ 𝑆) |
69 | 25, 32, 46, 26, 68, 23 | frecuzrdgrrn 8875 |
. . . . . . . . . . . 12
⊢ ((φ ∧ v ∈ 𝜔)
→ (𝑅‘v) ∈
((ℤ≥‘𝐶) × 𝑆)) |
70 | | xp2nd 5735 |
. . . . . . . . . . . 12
⊢ ((𝑅‘v) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘v)) ∈ 𝑆) |
71 | 69, 70 | syl 14 |
. . . . . . . . . . 11
⊢ ((φ ∧ v ∈ 𝜔)
→ (2nd ‘(𝑅‘v)) ∈ 𝑆) |
72 | | peano2uz 8302 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘v) ∈
(ℤ≥‘𝐶) → ((𝐺‘v) + 1) ∈
(ℤ≥‘𝐶)) |
73 | 67, 72 | syl 14 |
. . . . . . . . . . . 12
⊢ ((φ ∧ v ∈ 𝜔)
→ ((𝐺‘v) + 1) ∈
(ℤ≥‘𝐶)) |
74 | 68 | caovclg 5595 |
. . . . . . . . . . . . . 14
⊢ ((φ ∧
(z ∈
(ℤ≥‘𝐶) ∧
w ∈ 𝑆)) → (z𝐹w) ∈ 𝑆) |
75 | 74 | adantlr 446 |
. . . . . . . . . . . . 13
⊢ (((φ ∧ v ∈ 𝜔)
∧ (z ∈ (ℤ≥‘𝐶) ∧
w ∈ 𝑆)) → (z𝐹w) ∈ 𝑆) |
76 | 75, 67, 71 | caovcld 5596 |
. . . . . . . . . . . 12
⊢ ((φ ∧ v ∈ 𝜔)
→ ((𝐺‘v)𝐹(2nd ‘(𝑅‘v))) ∈ 𝑆) |
77 | | opelxp 4317 |
. . . . . . . . . . . 12
⊢
(〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉 ∈
((ℤ≥‘𝐶) × 𝑆) ↔ (((𝐺‘v) + 1) ∈
(ℤ≥‘𝐶) ∧ ((𝐺‘v)𝐹(2nd ‘(𝑅‘v))) ∈ 𝑆)) |
78 | 73, 76, 77 | sylanbrc 394 |
. . . . . . . . . . 11
⊢ ((φ ∧ v ∈ 𝜔)
→ 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) |
79 | | oveq1 5462 |
. . . . . . . . . . . . 13
⊢ (w = (𝐺‘v) → (w +
1) = ((𝐺‘v) + 1)) |
80 | | oveq1 5462 |
. . . . . . . . . . . . 13
⊢ (w = (𝐺‘v) → (w𝐹z) =
((𝐺‘v)𝐹z)) |
81 | 79, 80 | opeq12d 3548 |
. . . . . . . . . . . 12
⊢ (w = (𝐺‘v) → 〈(w + 1), (w𝐹z)〉 = 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹z)〉) |
82 | | oveq2 5463 |
. . . . . . . . . . . . 13
⊢ (z = (2nd ‘(𝑅‘v)) → ((𝐺‘v)𝐹z) =
((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))) |
83 | 82 | opeq2d 3547 |
. . . . . . . . . . . 12
⊢ (z = (2nd ‘(𝑅‘v)) → 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹z)〉
= 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) |
84 | | oveq1 5462 |
. . . . . . . . . . . . . 14
⊢ (x = w →
(x + 1) = (w + 1)) |
85 | | oveq1 5462 |
. . . . . . . . . . . . . 14
⊢ (x = w →
(x𝐹y) =
(w𝐹y)) |
86 | 84, 85 | opeq12d 3548 |
. . . . . . . . . . . . 13
⊢ (x = w →
〈(x + 1), (x𝐹y)〉
= 〈(w + 1), (w𝐹y)〉) |
87 | | oveq2 5463 |
. . . . . . . . . . . . . 14
⊢ (y = z →
(w𝐹y) =
(w𝐹z)) |
88 | 87 | opeq2d 3547 |
. . . . . . . . . . . . 13
⊢ (y = z →
〈(w + 1), (w𝐹y)〉
= 〈(w + 1), (w𝐹z)〉) |
89 | 86, 88 | cbvmpt2v 5526 |
. . . . . . . . . . . 12
⊢ (x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉) = (w
∈ (ℤ≥‘𝐶), z ∈ 𝑆 ↦ 〈(w + 1), (w𝐹z)〉) |
90 | 81, 83, 89 | ovmpt2g 5577 |
. . . . . . . . . . 11
⊢ (((𝐺‘v) ∈
(ℤ≥‘𝐶) ∧
(2nd ‘(𝑅‘v)) ∈ 𝑆 ∧ 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉 ∈
((ℤ≥‘𝐶) × 𝑆)) → ((𝐺‘v)(x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)(2nd ‘(𝑅‘v))) = 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) |
91 | 67, 71, 78, 90 | syl3anc 1134 |
. . . . . . . . . 10
⊢ ((φ ∧ v ∈ 𝜔)
→ ((𝐺‘v)(x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)(2nd ‘(𝑅‘v))) = 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) |
92 | 65, 91 | syl5eqr 2083 |
. . . . . . . . 9
⊢ ((φ ∧ v ∈ 𝜔)
→ ((x ∈ (ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) = 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) |
93 | 64, 92 | sylan9eqr 2091 |
. . . . . . . 8
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → ((x ∈
(ℤ≥‘𝐶), y
∈ 𝑆 ↦ 〈(x + 1), (x𝐹y)〉)‘(𝑅‘v)) = 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) |
94 | 63, 93 | eqtrd 2069 |
. . . . . . 7
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → (𝑅‘suc v) = 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) |
95 | 66, 32, 56 | frec2uzsucd 8868 |
. . . . . . . . 9
⊢ ((φ ∧ v ∈ 𝜔)
→ (𝐺‘suc
v) = ((𝐺‘v) + 1)) |
96 | 95 | adantr 261 |
. . . . . . . 8
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → (𝐺‘suc v) = ((𝐺‘v) + 1)) |
97 | 94 | fveq2d 5125 |
. . . . . . . . 9
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → (2nd ‘(𝑅‘suc v)) = (2nd ‘〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉)) |
98 | 66, 32, 56 | frec2uzzd 8867 |
. . . . . . . . . . . 12
⊢ ((φ ∧ v ∈ 𝜔)
→ (𝐺‘v) ∈
ℤ) |
99 | 98 | peano2zd 8139 |
. . . . . . . . . . 11
⊢ ((φ ∧ v ∈ 𝜔)
→ ((𝐺‘v) + 1) ∈
ℤ) |
100 | 99 | adantr 261 |
. . . . . . . . . 10
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → ((𝐺‘v) + 1) ∈
ℤ) |
101 | 76 | adantr 261 |
. . . . . . . . . 10
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → ((𝐺‘v)𝐹(2nd ‘(𝑅‘v))) ∈ 𝑆) |
102 | | op2ndg 5720 |
. . . . . . . . . 10
⊢ ((((𝐺‘v) + 1) ∈ ℤ
∧ ((𝐺‘v)𝐹(2nd ‘(𝑅‘v))) ∈ 𝑆) → (2nd
‘〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) = ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))) |
103 | 100, 101,
102 | syl2anc 391 |
. . . . . . . . 9
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → (2nd
‘〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) = ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))) |
104 | 97, 103 | eqtrd 2069 |
. . . . . . . 8
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → (2nd ‘(𝑅‘suc v)) = ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))) |
105 | 96, 104 | opeq12d 3548 |
. . . . . . 7
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → 〈(𝐺‘suc v), (2nd ‘(𝑅‘suc v))〉 = 〈((𝐺‘v) + 1), ((𝐺‘v)𝐹(2nd ‘(𝑅‘v)))〉) |
106 | 94, 105 | eqtr4d 2072 |
. . . . . 6
⊢ (((φ ∧ v ∈ 𝜔)
∧ (𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉) → (𝑅‘suc v) = 〈(𝐺‘suc v), (2nd ‘(𝑅‘suc v))〉) |
107 | 106 | ex 108 |
. . . . 5
⊢ ((φ ∧ v ∈ 𝜔)
→ ((𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉 → (𝑅‘suc v) = 〈(𝐺‘suc v), (2nd ‘(𝑅‘suc v))〉)) |
108 | 107 | expcom 109 |
. . . 4
⊢ (v ∈ 𝜔
→ (φ → ((𝑅‘v) = 〈(𝐺‘v), (2nd ‘(𝑅‘v))〉 → (𝑅‘suc v) = 〈(𝐺‘suc v), (2nd ‘(𝑅‘suc v))〉))) |
109 | 12, 17, 22, 41, 108 | finds2 4267 |
. . 3
⊢ (z ∈ 𝜔
→ (φ → (𝑅‘z) = 〈(𝐺‘z), (2nd ‘(𝑅‘z))〉)) |
110 | 7, 109 | vtoclga 2613 |
. 2
⊢ (B ∈ 𝜔
→ (φ → (𝑅‘B) = 〈(𝐺‘B), (2nd ‘(𝑅‘B))〉)) |
111 | 1, 110 | mpcom 32 |
1
⊢ (φ → (𝑅‘B) = 〈(𝐺‘B), (2nd ‘(𝑅‘B))〉) |