ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzsucd GIF version

Theorem frec2uzsucd 9560
Description: The value of 𝐺 (see frec2uz0d 9558) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
frec2uzsucd (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzsucd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 peano2z 8545 . . . . . . 7 (𝑧 ∈ ℤ → (𝑧 + 1) ∈ ℤ)
2 oveq1 5572 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
3 eqid 2083 . . . . . . . 8 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1))
42, 3fvmptg 5302 . . . . . . 7 ((𝑧 ∈ ℤ ∧ (𝑧 + 1) ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1))
51, 4mpdan 412 . . . . . 6 (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1))
65, 1eqeltrd 2159 . . . . 5 (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ)
76rgen 2422 . . . 4 𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ
8 frec2uz.1 . . . 4 (𝜑𝐶 ∈ ℤ)
9 frec2uzzd.a . . . 4 (𝜑𝐴 ∈ ω)
10 frecsuc 6078 . . . 4 ((∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)))
117, 8, 9, 10mp3an2i 1274 . . 3 (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)))
12 frec2uz.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
1312fveq1i 5232 . . 3 (𝐺‘suc 𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴)
1412fveq1i 5232 . . . 4 (𝐺𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)
1514fveq2i 5234 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))
1611, 13, 153eqtr4g 2140 . 2 (𝜑 → (𝐺‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)))
178, 12, 9frec2uzzd 9559 . . 3 (𝜑 → (𝐺𝐴) ∈ ℤ)
18 oveq1 5572 . . . 4 (𝑧 = (𝐺𝐴) → (𝑧 + 1) = ((𝐺𝐴) + 1))
192cbvmptv 3894 . . . 4 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑧 ∈ ℤ ↦ (𝑧 + 1))
2018, 19, 1fvmpt3 5305 . . 3 ((𝐺𝐴) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝐺𝐴) + 1))
2117, 20syl 14 . 2 (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝐺𝐴) + 1))
2216, 21eqtrd 2115 1 (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  wral 2353  cmpt 3860  suc csuc 4149  ωcom 4360  cfv 4953  (class class class)co 5565  freccfrec 6061  1c1 7121   + caddc 7123  cz 8509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358  ax-cnex 7206  ax-resscn 7207  ax-1cn 7208  ax-1re 7209  ax-icn 7210  ax-addcl 7211  ax-addrcl 7212  ax-mulcl 7213  ax-addcom 7215  ax-addass 7217  ax-distr 7219  ax-i2m1 7220  ax-0id 7223  ax-rnegex 7224  ax-cnre 7226
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-iord 4150  df-on 4152  df-ilim 4153  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-riota 5521  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-recs 5976  df-frec 6062  df-sub 7425  df-neg 7426  df-inn 8184  df-n0 8433  df-z 8510
This theorem is referenced by:  frec2uzuzd  9561  frec2uzltd  9562  frec2uzrand  9564  frec2uzrdg  9568  frecuzrdgsuc  9573  frecuzrdgg  9575  frecfzennn  9585  omgadd  9903
  Copyright terms: Public domain W3C validator