ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzsucd GIF version

Theorem frec2uzsucd 9027
Description: The value of 𝐺 (see frec2uz0d 9025) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
frec2uzsucd (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzsucd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uzzd.a . . . 4 (𝜑𝐴 ∈ ω)
3 zex 8188 . . . . . . . 8 ℤ ∈ V
43mptex 5348 . . . . . . 7 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
5 vex 2557 . . . . . . 7 𝑦 ∈ V
64, 5fvex 5156 . . . . . 6 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑦) ∈ V
76ax-gen 1338 . . . . 5 𝑦((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑦) ∈ V
8 frecsuc 5952 . . . . 5 ((∀𝑦((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑦) ∈ V ∧ 𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)))
97, 8mp3an1 1219 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)))
101, 2, 9syl2anc 391 . . 3 (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)))
11 frec2uz.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
1211fveq1i 5140 . . 3 (𝐺‘suc 𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴)
1311fveq1i 5140 . . . 4 (𝐺𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)
1413fveq2i 5142 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))
1510, 12, 143eqtr4g 2097 . 2 (𝜑 → (𝐺‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)))
161, 11, 2frec2uzzd 9026 . . 3 (𝜑 → (𝐺𝐴) ∈ ℤ)
17 oveq1 5480 . . . 4 (𝑧 = (𝐺𝐴) → (𝑧 + 1) = ((𝐺𝐴) + 1))
18 oveq1 5480 . . . . 5 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
1918cbvmptv 3848 . . . 4 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑧 ∈ ℤ ↦ (𝑧 + 1))
20 peano2z 8215 . . . 4 (𝑧 ∈ ℤ → (𝑧 + 1) ∈ ℤ)
2117, 19, 20fvmpt3 5212 . . 3 ((𝐺𝐴) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝐺𝐴) + 1))
2216, 21syl 14 . 2 (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝐺𝐴) + 1))
2315, 22eqtrd 2072 1 (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241   = wceq 1243  wcel 1393  Vcvv 2554  cmpt 3814  suc csuc 4073  ωcom 4274  cfv 4863  (class class class)co 5473  freccfrec 5938  1c1 6833   + caddc 6835  cz 8179
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3868  ax-sep 3871  ax-nul 3879  ax-pow 3923  ax-pr 3940  ax-un 4141  ax-setind 4230  ax-iinf 4272  ax-cnex 6918  ax-resscn 6919  ax-1cn 6920  ax-1re 6921  ax-icn 6922  ax-addcl 6923  ax-addrcl 6924  ax-mulcl 6925  ax-addcom 6927  ax-addass 6929  ax-distr 6931  ax-i2m1 6932  ax-0id 6935  ax-rnegex 6936  ax-cnre 6938
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3577  df-int 3612  df-iun 3655  df-br 3761  df-opab 3815  df-mpt 3816  df-tr 3851  df-id 4026  df-iord 4074  df-on 4076  df-suc 4079  df-iom 4275  df-xp 4312  df-rel 4313  df-cnv 4314  df-co 4315  df-dm 4316  df-rn 4317  df-res 4318  df-ima 4319  df-iota 4828  df-fun 4865  df-fn 4866  df-f 4867  df-f1 4868  df-fo 4869  df-f1o 4870  df-fv 4871  df-riota 5429  df-ov 5476  df-oprab 5477  df-mpt2 5478  df-recs 5881  df-frec 5939  df-sub 7126  df-neg 7127  df-inn 7853  df-n0 8116  df-z 8180
This theorem is referenced by:  frec2uzuzd  9028  frec2uzltd  9029  frec2uzrand  9031  frec2uzrdg  9035  frecuzrdgsuc  9041  frecfzennn  9043
  Copyright terms: Public domain W3C validator