ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccl GIF version

Theorem freccl 6052
Description: Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.)
Hypotheses
Ref Expression
freccl.a (𝜑𝐴𝑆)
freccl.cl ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
freccl.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
freccl (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Distinct variable groups:   𝜑,𝑧   𝑧,𝑆   𝑧,𝐹   𝑧,𝐴
Allowed substitution hint:   𝐵(𝑧)

Proof of Theorem freccl
Dummy variables 𝑥 𝑚 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freccl.a . 2 (𝜑𝐴𝑆)
2 freccl.cl . 2 ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)
3 freccl.b . 2 (𝜑𝐵 ∈ ω)
4 eqid 2082 . 2 recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
51, 2, 3, 4freccllem 6051 1 (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 662   = wceq 1285  wcel 1434  {cab 2068  wrex 2350  Vcvv 2602  c0 3258  cmpt 3847  suc csuc 4128  ωcom 4339  dom cdm 4371  cfv 4932  recscrecs 5953  freccfrec 6039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-recs 5954  df-frec 6040
This theorem is referenced by:  frec2uzzd  9482  frecuzrdgrrn  9490
  Copyright terms: Public domain W3C validator