ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freceq2 GIF version

Theorem freceq2 6010
Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
freceq2 (𝐴 = 𝐵 → frec(𝐹, 𝐴) = frec(𝐹, 𝐵))

Proof of Theorem freceq2
Dummy variables 𝑥 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 106 . . . . . . . . 9 ((𝐴 = 𝐵𝑔 ∈ V) → 𝐴 = 𝐵)
21eleq2d 2123 . . . . . . . 8 ((𝐴 = 𝐵𝑔 ∈ V) → (𝑥𝐴𝑥𝐵))
32anbi2d 445 . . . . . . 7 ((𝐴 = 𝐵𝑔 ∈ V) → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑥𝐵)))
43orbi2d 714 . . . . . 6 ((𝐴 = 𝐵𝑔 ∈ V) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐵))))
54abbidv 2171 . . . . 5 ((𝐴 = 𝐵𝑔 ∈ V) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐵))})
65mpteq2dva 3874 . . . 4 (𝐴 = 𝐵 → (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐵))}))
7 recseq 5951 . . . 4 ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐵))}) → recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐵))})))
86, 7syl 14 . . 3 (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐵))})))
98reseq1d 4638 . 2 (𝐴 = 𝐵 → (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐵))})) ↾ ω))
10 df-frec 6008 . 2 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
11 df-frec 6008 . 2 frec(𝐹, 𝐵) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐵))})) ↾ ω)
129, 10, 113eqtr4g 2113 1 (𝐴 = 𝐵 → frec(𝐹, 𝐴) = frec(𝐹, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wo 639   = wceq 1259  wcel 1409  {cab 2042  wrex 2324  Vcvv 2574  c0 3251  cmpt 3845  suc csuc 4129  ωcom 4340  dom cdm 4372  cres 4374  cfv 4929  recscrecs 5949  freccfrec 6007
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-in 2951  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-res 4384  df-iota 4894  df-fv 4937  df-recs 5950  df-frec 6008
This theorem is referenced by:  iseqeq1  9377  iseqeq3  9379
  Copyright terms: Public domain W3C validator