Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzen2 GIF version

Theorem frecfzen2 9044
 Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
frecfzen2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))

Proof of Theorem frecfzen2
StepHypRef Expression
1 eluzel2 8412 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 eluzelz 8416 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 1z 8205 . . . . 5 1 ∈ ℤ
4 zsubcl 8220 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 1, 4sylancr 393 . . . 4 (𝑁 ∈ (ℤ𝑀) → (1 − 𝑀) ∈ ℤ)
6 fzen 8836 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (1 − 𝑀) ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
71, 2, 5, 6syl3anc 1135 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
81zcnd 8295 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℂ)
9 ax-1cn 6920 . . . . 5 1 ∈ ℂ
10 pncan3 7161 . . . . 5 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
118, 9, 10sylancl 392 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀 + (1 − 𝑀)) = 1)
12 zcn 8184 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 zcn 8184 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 addsubass 7163 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
159, 14mp3an2 1220 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1612, 13, 15syl2an 273 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
172, 1, 16syl2anc 391 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1817eqcomd 2045 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + (1 − 𝑀)) = ((𝑁 + 1) − 𝑀))
1911, 18oveq12d 5491 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))) = (1...((𝑁 + 1) − 𝑀)))
207, 19breqtrd 3784 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)))
21 peano2uz 8460 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
22 uznn0sub 8438 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
23 frecfzennn.1 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2423frecfzennn 9043 . . 3 (((𝑁 + 1) − 𝑀) ∈ ℕ0 → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2521, 22, 243syl 17 . 2 (𝑁 ∈ (ℤ𝑀) → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
26 entr 6223 . 2 (((𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)) ∧ (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2720, 25, 26syl2anc 391 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∈ wcel 1393   class class class wbr 3760   ↦ cmpt 3814  ◡ccnv 4305  ‘cfv 4863  (class class class)co 5473  freccfrec 5938   ≈ cen 6178  ℂcc 6830  0cc0 6832  1c1 6833   + caddc 6835   − cmin 7124  ℕ0cn0 8115  ℤcz 8179  ℤ≥cuz 8407  ...cfz 8803 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3868  ax-sep 3871  ax-nul 3879  ax-pow 3923  ax-pr 3940  ax-un 4141  ax-setind 4230  ax-iinf 4272  ax-cnex 6918  ax-resscn 6919  ax-1cn 6920  ax-1re 6921  ax-icn 6922  ax-addcl 6923  ax-addrcl 6924  ax-mulcl 6925  ax-addcom 6927  ax-addass 6929  ax-distr 6931  ax-i2m1 6932  ax-0id 6935  ax-rnegex 6936  ax-cnre 6938  ax-pre-ltirr 6939  ax-pre-ltwlin 6940  ax-pre-lttrn 6941  ax-pre-apti 6942  ax-pre-ltadd 6943 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3577  df-int 3612  df-iun 3655  df-br 3761  df-opab 3815  df-mpt 3816  df-tr 3851  df-eprel 4022  df-id 4026  df-po 4029  df-iso 4030  df-iord 4074  df-on 4076  df-suc 4079  df-iom 4275  df-xp 4312  df-rel 4313  df-cnv 4314  df-co 4315  df-dm 4316  df-rn 4317  df-res 4318  df-ima 4319  df-iota 4828  df-fun 4865  df-fn 4866  df-f 4867  df-f1 4868  df-fo 4869  df-f1o 4870  df-fv 4871  df-riota 5429  df-ov 5476  df-oprab 5477  df-mpt2 5478  df-1st 5728  df-2nd 5729  df-recs 5881  df-irdg 5918  df-frec 5939  df-1o 5962  df-2o 5963  df-oadd 5966  df-omul 5967  df-er 6065  df-ec 6067  df-qs 6071  df-en 6181  df-ni 6345  df-pli 6346  df-mi 6347  df-lti 6348  df-plpq 6385  df-mpq 6386  df-enq 6388  df-nqqs 6389  df-plqqs 6390  df-mqqs 6391  df-1nqqs 6392  df-rq 6393  df-ltnqqs 6394  df-enq0 6465  df-nq0 6466  df-0nq0 6467  df-plq0 6468  df-mq0 6469  df-inp 6507  df-i1p 6508  df-iplp 6509  df-iltp 6511  df-enr 6754  df-nr 6755  df-ltr 6758  df-0r 6759  df-1r 6760  df-0 6839  df-1 6840  df-r 6842  df-lt 6845  df-pnf 7004  df-mnf 7005  df-xr 7006  df-ltxr 7007  df-le 7008  df-sub 7126  df-neg 7127  df-inn 7853  df-n0 8116  df-z 8180  df-uz 8408  df-fz 8804 This theorem is referenced by:  fzfig  9046
 Copyright terms: Public domain W3C validator