ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecrdg GIF version

Theorem frecrdg 6305
Description: Transfinite recursion restricted to omega.

Given a suitable characteristic function, df-frec 6288 produces the same results as df-irdg 6267 restricted to ω.

Presumably the theorem would also hold if 𝐹 Fn V were changed to 𝑧(𝐹𝑧) ∈ V. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
frecrdg.1 (𝜑𝐹 Fn V)
frecrdg.2 (𝜑𝐴𝑉)
frecrdg.inc (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
Assertion
Ref Expression
frecrdg (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑉   𝜑,𝑥

Proof of Theorem frecrdg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecrdg.1 . . . 4 (𝜑𝐹 Fn V)
2 vex 2689 . . . . . 6 𝑧 ∈ V
3 funfvex 5438 . . . . . . 7 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ V)
43funfni 5223 . . . . . 6 ((𝐹 Fn V ∧ 𝑧 ∈ V) → (𝐹𝑧) ∈ V)
52, 4mpan2 421 . . . . 5 (𝐹 Fn V → (𝐹𝑧) ∈ V)
65alrimiv 1846 . . . 4 (𝐹 Fn V → ∀𝑧(𝐹𝑧) ∈ V)
71, 6syl 14 . . 3 (𝜑 → ∀𝑧(𝐹𝑧) ∈ V)
8 frecrdg.2 . . 3 (𝜑𝐴𝑉)
9 frecfnom 6298 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → frec(𝐹, 𝐴) Fn ω)
107, 8, 9syl2anc 408 . 2 (𝜑 → frec(𝐹, 𝐴) Fn ω)
11 rdgifnon2 6277 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → rec(𝐹, 𝐴) Fn On)
127, 8, 11syl2anc 408 . . 3 (𝜑 → rec(𝐹, 𝐴) Fn On)
13 omsson 4526 . . 3 ω ⊆ On
14 fnssres 5236 . . 3 ((rec(𝐹, 𝐴) Fn On ∧ ω ⊆ On) → (rec(𝐹, 𝐴) ↾ ω) Fn ω)
1512, 13, 14sylancl 409 . 2 (𝜑 → (rec(𝐹, 𝐴) ↾ ω) Fn ω)
16 fveq2 5421 . . . . 5 (𝑥 = ∅ → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘∅))
17 fveq2 5421 . . . . 5 (𝑥 = ∅ → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘∅))
1816, 17eqeq12d 2154 . . . 4 (𝑥 = ∅ → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘∅) = ((rec(𝐹, 𝐴) ↾ ω)‘∅)))
19 fveq2 5421 . . . . 5 (𝑥 = 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘𝑦))
20 fveq2 5421 . . . . 5 (𝑥 = 𝑦 → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦))
2119, 20eqeq12d 2154 . . . 4 (𝑥 = 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)))
22 fveq2 5421 . . . . 5 (𝑥 = suc 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘suc 𝑦))
23 fveq2 5421 . . . . 5 (𝑥 = suc 𝑦 → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))
2422, 23eqeq12d 2154 . . . 4 (𝑥 = suc 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)))
25 frec0g 6294 . . . . . 6 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
268, 25syl 14 . . . . 5 (𝜑 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
27 peano1 4508 . . . . . . 7 ∅ ∈ ω
28 fvres 5445 . . . . . . 7 (∅ ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅))
2927, 28ax-mp 5 . . . . . 6 ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅)
30 rdg0g 6285 . . . . . . 7 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
318, 30syl 14 . . . . . 6 (𝜑 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
3229, 31syl5eq 2184 . . . . 5 (𝜑 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴)
3326, 32eqtr4d 2175 . . . 4 (𝜑 → (frec(𝐹, 𝐴)‘∅) = ((rec(𝐹, 𝐴) ↾ ω)‘∅))
34 simpr 109 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦))
35 fvres 5445 . . . . . . . . . . 11 (𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3635ad2antlr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3734, 36eqtrd 2172 . . . . . . . . 9 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3837fveq2d 5425 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
397, 8jca 304 . . . . . . . . . 10 (𝜑 → (∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉))
40 simp1 981 . . . . . . . . . . . . 13 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → ∀𝑧(𝐹𝑧) ∈ V)
41 ralv 2703 . . . . . . . . . . . . 13 (∀𝑧 ∈ V (𝐹𝑧) ∈ V ↔ ∀𝑧(𝐹𝑧) ∈ V)
4240, 41sylibr 133 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → ∀𝑧 ∈ V (𝐹𝑧) ∈ V)
43 simp2 982 . . . . . . . . . . . . 13 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝐴𝑉)
4443elexd 2699 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝐴 ∈ V)
45 simp3 983 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝑦 ∈ ω)
46 frecsuc 6304 . . . . . . . . . . . 12 ((∀𝑧 ∈ V (𝐹𝑧) ∈ V ∧ 𝐴 ∈ V ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
4742, 44, 45, 46syl3anc 1216 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
48473expa 1181 . . . . . . . . . 10 (((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
4939, 48sylan 281 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
5049adantr 274 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
511adantr 274 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝐹 Fn V)
528adantr 274 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝐴𝑉)
53 simpr 109 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ ω)
54 nnon 4523 . . . . . . . . . . 11 (𝑦 ∈ ω → 𝑦 ∈ On)
5553, 54syl 14 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ On)
56 frecrdg.inc . . . . . . . . . . 11 (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
5756adantr 274 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
5851, 52, 55, 57rdgisucinc 6282 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → (rec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
5958adantr 274 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (rec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
6038, 50, 593eqtr4d 2182 . . . . . . 7 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
61 peano2 4509 . . . . . . . . 9 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
62 fvres 5445 . . . . . . . . 9 (suc 𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6361, 62syl 14 . . . . . . . 8 (𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6463ad2antlr 480 . . . . . . 7 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6560, 64eqtr4d 2175 . . . . . 6 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))
6665ex 114 . . . . 5 ((𝜑𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)))
6766expcom 115 . . . 4 (𝑦 ∈ ω → (𝜑 → ((frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))))
6818, 21, 24, 33, 67finds2 4515 . . 3 (𝑥 ∈ ω → (𝜑 → (frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥)))
6968impcom 124 . 2 ((𝜑𝑥 ∈ ω) → (frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥))
7010, 15, 69eqfnfvd 5521 1 (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962  wal 1329   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  wss 3071  c0 3363  Oncon0 4285  suc csuc 4287  ωcom 4504  cres 4541   Fn wfn 5118  cfv 5123  reccrdg 6266  freccfrec 6287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202  df-irdg 6267  df-frec 6288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator