Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem2 GIF version

Theorem frecsuclem2 6020
 Description: Lemma for frecsuc 6022. (Contributed by Jim Kingdon, 15-Aug-2019.)
Hypothesis
Ref Expression
frecsuclem1.h 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frecsuclem2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥,𝑧   𝐵,𝑔,𝑚,𝑥,𝑧   𝑔,𝐹,𝑚,𝑥,𝑧   𝑔,𝐺,𝑚,𝑥,𝑧   𝑔,𝑉,𝑚,𝑥
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem frecsuclem2
StepHypRef Expression
1 sucidg 4181 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵)
2 fvres 5226 . . . 4 (𝐵 ∈ suc 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵))
31, 2syl 14 . . 3 (𝐵 ∈ ω → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵))
4 df-frec 6009 . . . . . 6 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
5 frecsuclem1.h . . . . . . . 8 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
6 recseq 5952 . . . . . . . 8 (𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) → recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
75, 6ax-mp 7 . . . . . . 7 recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
87reseq1i 4636 . . . . . 6 (recs(𝐺) ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
94, 8eqtr4i 2079 . . . . 5 frec(𝐹, 𝐴) = (recs(𝐺) ↾ ω)
109fveq1i 5207 . . . 4 (frec(𝐹, 𝐴)‘𝐵) = ((recs(𝐺) ↾ ω)‘𝐵)
11 fvres 5226 . . . 4 (𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘𝐵) = (recs(𝐺)‘𝐵))
1210, 11syl5eq 2100 . . 3 (𝐵 ∈ ω → (frec(𝐹, 𝐴)‘𝐵) = (recs(𝐺)‘𝐵))
133, 12eqtr4d 2091 . 2 (𝐵 ∈ ω → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
14133ad2ant3 938 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ∨ wo 639   ∧ w3a 896  ∀wal 1257   = wceq 1259   ∈ wcel 1409  {cab 2042  ∃wrex 2324  Vcvv 2574  ∅c0 3252   ↦ cmpt 3846  suc csuc 4130  ωcom 4341  dom cdm 4373   ↾ cres 4375  ‘cfv 4930  recscrecs 5950  freccfrec 6008 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-suc 4136  df-xp 4379  df-res 4385  df-iota 4895  df-fv 4938  df-recs 5951  df-frec 6009 This theorem is referenced by:  frecsuclem3  6021
 Copyright terms: Public domain W3C validator