ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem3 GIF version

Theorem frecsuclem3 6021
Description: Lemma for frecsuc 6022. (Contributed by Jim Kingdon, 15-Aug-2019.)
Hypothesis
Ref Expression
frecsuclem1.h 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frecsuclem3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥,𝑧   𝐵,𝑔,𝑚,𝑥,𝑧   𝑔,𝐹,𝑚,𝑥,𝑧   𝑔,𝐺,𝑚,𝑥,𝑧   𝑔,𝑉,𝑚,𝑥
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem frecsuclem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2056 . . . . . . . . . . . . 13 recs(𝐺) = recs(𝐺)
2 frecsuclem1.h . . . . . . . . . . . . . 14 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
32frectfr 6016 . . . . . . . . . . . . 13 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
41, 3tfri1d 5980 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → recs(𝐺) Fn On)
5 fnfun 5024 . . . . . . . . . . . 12 (recs(𝐺) Fn On → Fun recs(𝐺))
64, 5syl 14 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → Fun recs(𝐺))
763adant3 935 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → Fun recs(𝐺))
8 peano2 4346 . . . . . . . . . . 11 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
983ad2ant3 938 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → suc 𝐵 ∈ ω)
10 resfunexg 5410 . . . . . . . . . 10 ((Fun recs(𝐺) ∧ suc 𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
117, 9, 10syl2anc 397 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
12 simp1 915 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ∀𝑧(𝐹𝑧) ∈ V)
13 simp2 916 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → 𝐴𝑉)
1411, 12, 13frecabex 6015 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V)
15 dmeq 4563 . . . . . . . . . . . . . . . . 17 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → dom 𝑔 = dom (recs(𝐺) ↾ suc 𝐵))
1615eqeq1d 2064 . . . . . . . . . . . . . . . 16 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = suc 𝑚 ↔ dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚))
17 fveq1 5205 . . . . . . . . . . . . . . . . . 18 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑔𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝑚))
1817fveq2d 5210 . . . . . . . . . . . . . . . . 17 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝐹‘(𝑔𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))
1918eleq2d 2123 . . . . . . . . . . . . . . . 16 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))
2016, 19anbi12d 450 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
2120rexbidv 2344 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
2215eqeq1d 2064 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = ∅ ↔ dom (recs(𝐺) ↾ suc 𝐵) = ∅))
2322anbi1d 446 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
2421, 23orbi12d 717 . . . . . . . . . . . . 13 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
2524abbidv 2171 . . . . . . . . . . . 12 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
2625, 2fvmptg 5276 . . . . . . . . . . 11 (((recs(𝐺) ↾ suc 𝐵) ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
2726ex 112 . . . . . . . . . 10 ((recs(𝐺) ↾ suc 𝐵) ∈ V → ({𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))}))
2811, 27syl 14 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ({𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))}))
292frecsuclem1 6018 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
3029eqeq1d 2064 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ((frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ↔ (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))}))
3128, 30sylibrd 162 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ({𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ V → (frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))}))
3214, 31mpd 13 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
3332abeq2d 2166 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
342frecsuclemdm 6019 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵)
35 peano3 4347 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ≠ ∅)
36353ad2ant3 938 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → suc 𝐵 ≠ ∅)
3734, 36eqnetrd 2244 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) ≠ ∅)
3837neneqd 2241 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ¬ dom (recs(𝐺) ↾ suc 𝐵) = ∅)
3938intnanrd 852 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))
40 biorf 673 . . . . . . . 8 (¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
4139, 40syl 14 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
42 orcom 657 . . . . . . 7 (((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
4341, 42syl6bb 189 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
4434eqeq1d 2064 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ↔ suc 𝐵 = suc 𝑚))
45 vex 2577 . . . . . . . . . . . 12 𝑚 ∈ V
46 suc11g 4309 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑚 ∈ V) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
4745, 46mpan2 409 . . . . . . . . . . 11 (𝐵 ∈ ω → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
48473ad2ant3 938 . . . . . . . . . 10 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
4944, 48bitrd 181 . . . . . . . . 9 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝐵 = 𝑚))
50 eqcom 2058 . . . . . . . . 9 (𝐵 = 𝑚𝑚 = 𝐵)
5149, 50syl6bb 189 . . . . . . . 8 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑚 = 𝐵))
5251anbi1d 446 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ((dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
5352rexbidv 2344 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
5433, 43, 533bitr2d 209 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
55 fveq2 5206 . . . . . . . 8 (𝑚 = 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝐵))
5655fveq2d 5210 . . . . . . 7 (𝑚 = 𝐵 → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
5756eleq2d 2123 . . . . . 6 (𝑚 = 𝐵 → (𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
5857ceqsrexbv 2698 . . . . 5 (∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
5954, 58syl6bb 189 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))))
60593anibar 1083 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
6160eqrdv 2054 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
622frecsuclem2 6020 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
6362fveq2d 5210 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
6461, 63eqtrd 2088 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wo 639  w3a 896  wal 1257   = wceq 1259  wcel 1409  {cab 2042  wne 2220  wrex 2324  Vcvv 2574  c0 3252  cmpt 3846  Oncon0 4128  suc csuc 4130  ωcom 4341  dom cdm 4373  cres 4375  Fun wfun 4924   Fn wfn 4925  cfv 4930  recscrecs 5950  freccfrec 6008
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-recs 5951  df-frec 6009
This theorem is referenced by:  frecsuc  6022
  Copyright terms: Public domain W3C validator