ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdomlem GIF version

Theorem frecuzrdgdomlem 10183
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgdomlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frecuzrdgdomlem (𝜑 → dom ran 𝑅 = (ℤ𝐶))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem frecuzrdgdomlem
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
61, 2, 3, 4, 5frecuzrdgrclt 10181 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
7 frn 5276 . . . . 5 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
86, 7syl 14 . . . 4 (𝜑 → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
9 dmss 4733 . . . 4 (ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆) → dom ran 𝑅 ⊆ dom ((ℤ𝐶) × 𝑆))
108, 9syl 14 . . 3 (𝜑 → dom ran 𝑅 ⊆ dom ((ℤ𝐶) × 𝑆))
11 dmxpss 4964 . . 3 dom ((ℤ𝐶) × 𝑆) ⊆ (ℤ𝐶)
1210, 11sstrdi 3104 . 2 (𝜑 → dom ran 𝑅 ⊆ (ℤ𝐶))
138adantr 274 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
14 ffun 5270 . . . . . . . . . . . 12 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → Fun 𝑅)
156, 14syl 14 . . . . . . . . . . 11 (𝜑 → Fun 𝑅)
1615adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → Fun 𝑅)
17 frecuzrdgdomlem.g . . . . . . . . . . . . 13 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
181, 17frec2uzf1od 10172 . . . . . . . . . . . 12 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
19 f1ocnvdm 5675 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
2018, 19sylan 281 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
21 fdm 5273 . . . . . . . . . . . . 13 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → dom 𝑅 = ω)
226, 21syl 14 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = ω)
2322adantr 274 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → dom 𝑅 = ω)
2420, 23eleqtrrd 2217 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ dom 𝑅)
25 fvelrn 5544 . . . . . . . . . 10 ((Fun 𝑅 ∧ (𝐺𝑣) ∈ dom 𝑅) → (𝑅‘(𝐺𝑣)) ∈ ran 𝑅)
2616, 24, 25syl2anc 408 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ran 𝑅)
2713, 26sseldd 3093 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
28 1st2nd2 6066 . . . . . . . 8 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (𝑅‘(𝐺𝑣)) = ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
2927, 28syl 14 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) = ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
301adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
312adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐴𝑆)
323adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑆𝑇)
334adantlr 468 . . . . . . . . . 10 (((𝜑𝑣 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
3430, 31, 32, 33, 5, 20, 17frecuzrdgg 10182 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝑣))) = (𝐺‘(𝐺𝑣)))
35 f1ocnvfv2 5672 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝑣)) = 𝑣)
3618, 35sylan 281 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝑣)) = 𝑣)
3734, 36eqtrd 2170 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝑣))) = 𝑣)
3837opeq1d 3706 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩ = ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
3929, 38eqtrd 2170 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) = ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
4039, 26eqeltrrd 2215 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
41 simpr 109 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ (ℤ𝐶))
42 xp2nd 6057 . . . . . . 7 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
4327, 42syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
44 opeldmg 4739 . . . . . 6 ((𝑣 ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅𝑣 ∈ dom ran 𝑅))
4541, 43, 44syl2anc 408 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅𝑣 ∈ dom ran 𝑅))
4640, 45mpd 13 . . . 4 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ dom ran 𝑅)
4746ex 114 . . 3 (𝜑 → (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom ran 𝑅))
4847ssrdv 3098 . 2 (𝜑 → (ℤ𝐶) ⊆ dom ran 𝑅)
4912, 48eqssd 3109 1 (𝜑 → dom ran 𝑅 = (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wss 3066  cop 3525  cmpt 3984  ωcom 4499   × cxp 4532  ccnv 4533  dom cdm 4534  ran crn 4535  Fun wfun 5112  wf 5114  1-1-ontowf1o 5117  cfv 5118  (class class class)co 5767  cmpo 5769  1st c1st 6029  2nd c2nd 6030  freccfrec 6280  1c1 7614   + caddc 7616  cz 9047  cuz 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320
This theorem is referenced by:  frecuzrdgdom  10184
  Copyright terms: Public domain W3C validator