Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgrom GIF version

Theorem frecuzrdgrom 9360
 Description: The function 𝑅 (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
uzrdg.s (𝜑𝑆𝑉)
uzrdg.a (𝜑𝐴𝑆)
uzrdg.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
uzrdg.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
Assertion
Ref Expression
frecuzrdgrom (𝜑𝑅 Fn ω)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem frecuzrdgrom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zex 8311 . . . . . . 7 ℤ ∈ V
2 uzssz 8588 . . . . . . 7 (ℤ𝐶) ⊆ ℤ
31, 2ssexi 3923 . . . . . 6 (ℤ𝐶) ∈ V
4 uzrdg.s . . . . . 6 (𝜑𝑆𝑉)
5 mpt2exga 5863 . . . . . 6 (((ℤ𝐶) ∈ V ∧ 𝑆𝑉) → (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V)
63, 4, 5sylancr 399 . . . . 5 (𝜑 → (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V)
7 vex 2577 . . . . 5 𝑧 ∈ V
8 fvexg 5222 . . . . 5 (((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
96, 7, 8sylancl 398 . . . 4 (𝜑 → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
109alrimiv 1770 . . 3 (𝜑 → ∀𝑧((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
11 frec2uz.1 . . . . 5 (𝜑𝐶 ∈ ℤ)
12 uzid 8583 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
1311, 12syl 14 . . . 4 (𝜑𝐶 ∈ (ℤ𝐶))
14 uzrdg.a . . . 4 (𝜑𝐴𝑆)
15 opelxp 4402 . . . 4 (⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆))
1613, 14, 15sylanbrc 402 . . 3 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
17 frecfnom 6017 . . 3 ((∀𝑧((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V ∧ ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆)) → frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) Fn ω)
1810, 16, 17syl2anc 397 . 2 (𝜑 → frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) Fn ω)
19 uzrdg.2 . . 3 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
2019fneq1i 5021 . 2 (𝑅 Fn ω ↔ frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) Fn ω)
2118, 20sylibr 141 1 (𝜑𝑅 Fn ω)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101  ∀wal 1257   = wceq 1259   ∈ wcel 1409  Vcvv 2574  ⟨cop 3406   ↦ cmpt 3846  ωcom 4341   × cxp 4371   Fn wfn 4925  ‘cfv 4930  (class class class)co 5540   ↦ cmpt2 5542  freccfrec 6008  1c1 6948   + caddc 6950  ℤcz 8302  ℤ≥cuz 8569 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-pre-ltirr 7054 This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-frec 6009  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-neg 7248  df-z 8303  df-uz 8570 This theorem is referenced by:  frecuzrdglem  9361  frecuzrdgfn  9362  frecuzrdg0  9364
 Copyright terms: Public domain W3C validator