ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuc GIF version

Theorem frecuzrdgsuc 9365
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9349 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 28-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
uzrdg.s (𝜑𝑆𝑉)
uzrdg.a (𝜑𝐴𝑆)
uzrdg.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
uzrdg.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgfn.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgsuc ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem frecuzrdgsuc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
21adantr 265 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
3 frec2uz.2 . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
4 uzrdg.s . . . . . . 7 (𝜑𝑆𝑉)
54adantr 265 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑆𝑉)
6 uzrdg.a . . . . . . 7 (𝜑𝐴𝑆)
76adantr 265 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐴𝑆)
8 uzrdg.f . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
98adantlr 454 . . . . . 6 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
10 uzrdg.2 . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
11 peano2uz 8622 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → (𝐵 + 1) ∈ (ℤ𝐶))
1211adantl 266 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵 + 1) ∈ (ℤ𝐶))
132, 3, 5, 7, 9, 10, 12frecuzrdglem 9361 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ ran 𝑅)
14 frecuzrdgfn.3 . . . . . 6 (𝜑𝑇 = ran 𝑅)
1514adantr 265 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑇 = ran 𝑅)
1613, 15eleqtrrd 2133 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇)
171, 3, 4, 6, 8, 10, 14frecuzrdgfn 9362 . . . . . . 7 (𝜑𝑇 Fn (ℤ𝐶))
18 fnfun 5024 . . . . . . 7 (𝑇 Fn (ℤ𝐶) → Fun 𝑇)
1917, 18syl 14 . . . . . 6 (𝜑 → Fun 𝑇)
20 funopfv 5241 . . . . . 6 (Fun 𝑇 → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
2119, 20syl 14 . . . . 5 (𝜑 → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
2221adantr 265 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
2316, 22mpd 13 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))))
241, 3frec2uzf1od 9356 . . . . . . . . 9 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
25 f1ocnvdm 5449 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
2624, 25sylan 271 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
272, 3, 26frec2uzsucd 9351 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵)) + 1))
28 f1ocnvfv2 5446 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
2924, 28sylan 271 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
3029oveq1d 5555 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵)) + 1) = (𝐵 + 1))
3127, 30eqtrd 2088 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘suc (𝐺𝐵)) = (𝐵 + 1))
32 peano2 4346 . . . . . . . 8 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
3326, 32syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ ω)
34 f1ocnvfv 5447 . . . . . . . 8 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ suc (𝐺𝐵) ∈ ω) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
3524, 34sylan 271 . . . . . . 7 ((𝜑 ∧ suc (𝐺𝐵) ∈ ω) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
3633, 35syldan 270 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
3731, 36mpd 13 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵))
3837fveq2d 5210 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺‘(𝐵 + 1))) = (𝑅‘suc (𝐺𝐵)))
3938fveq2d 5210 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
4023, 39eqtrd 2088 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
41 zex 8311 . . . . . . . . . . 11 ℤ ∈ V
42 uzssz 8588 . . . . . . . . . . 11 (ℤ𝐶) ⊆ ℤ
4341, 42ssexi 3923 . . . . . . . . . 10 (ℤ𝐶) ∈ V
44 mpt2exga 5863 . . . . . . . . . 10 (((ℤ𝐶) ∈ V ∧ 𝑆𝑉) → (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V)
4543, 44mpan 408 . . . . . . . . 9 (𝑆𝑉 → (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V)
46 vex 2577 . . . . . . . . . 10 𝑧 ∈ V
47 fvexg 5222 . . . . . . . . . 10 (((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
4846, 47mpan2 409 . . . . . . . . 9 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
495, 45, 483syl 17 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
5049alrimiv 1770 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ∀𝑧((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
51 opelxp 4402 . . . . . . . . 9 (⟨𝐶, 𝐴⟩ ∈ (ℤ × 𝑆) ↔ (𝐶 ∈ ℤ ∧ 𝐴𝑆))
521, 6, 51sylanbrc 402 . . . . . . . 8 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ (ℤ × 𝑆))
5352adantr 265 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐶, 𝐴⟩ ∈ (ℤ × 𝑆))
54 frecsuc 6022 . . . . . . 7 ((∀𝑧((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V ∧ ⟨𝐶, 𝐴⟩ ∈ (ℤ × 𝑆) ∧ (𝐺𝐵) ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
5550, 53, 26, 54syl3anc 1146 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
5610fveq1i 5207 . . . . . 6 (𝑅‘suc (𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵))
5710fveq1i 5207 . . . . . . 7 (𝑅‘(𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))
5857fveq2i 5209 . . . . . 6 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵)))
5955, 56, 583eqtr4g 2113 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
602, 3, 5, 7, 9, 10, 26frec2uzrdg 9359 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
6160fveq2d 5210 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
62 df-ov 5543 . . . . . 6 ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
6361, 62syl6eqr 2106 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
642, 3, 26frec2uzuzd 9352 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) ∈ (ℤ𝐶))
652, 3, 5, 7, 9, 10frecuzrdgrrn 9358 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝐺𝐵) ∈ ω) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
6626, 65mpdan 406 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
67 xp2nd 5821 . . . . . . 7 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
6866, 67syl 14 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
6930, 12eqeltrd 2130 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶))
709caovclg 5681 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑧 ∈ (ℤ𝐶) ∧ 𝑤𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆)
7170, 64, 68caovcld 5682 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆)
72 opexg 3992 . . . . . . 7 ((((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶) ∧ ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V)
7369, 71, 72syl2anc 397 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V)
74 oveq1 5547 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧 + 1) = ((𝐺‘(𝐺𝐵)) + 1))
75 oveq1 5547 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹𝑤))
7674, 75opeq12d 3585 . . . . . . 7 (𝑧 = (𝐺‘(𝐺𝐵)) → ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩)
77 oveq2 5548 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ((𝐺‘(𝐺𝐵))𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
7877opeq2d 3584 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
79 oveq1 5547 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
80 oveq1 5547 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦))
8179, 80opeq12d 3585 . . . . . . . 8 (𝑥 = 𝑧 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩)
82 oveq2 5548 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤))
8382opeq2d 3584 . . . . . . . 8 (𝑦 = 𝑤 → ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
8481, 83cbvmpt2v 5612 . . . . . . 7 (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑧 ∈ (ℤ𝐶), 𝑤𝑆 ↦ ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
8576, 78, 84ovmpt2g 5663 . . . . . 6 (((𝐺‘(𝐺𝐵)) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆 ∧ ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
8664, 68, 73, 85syl3anc 1146 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
8759, 63, 863eqtrd 2092 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
8887fveq2d 5210 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩))
89 op2ndg 5806 . . . 4 ((((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶) ∧ ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆) → (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
9069, 71, 89syl2anc 397 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
9188, 90eqtrd 2088 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
92 simpr 107 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐵 ∈ (ℤ𝐶))
932, 3, 5, 7, 9, 10, 92frecuzrdglem 9361 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
9493, 15eleqtrrd 2133 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇)
95 funopfv 5241 . . . . . . 7 (Fun 𝑇 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
9619, 95syl 14 . . . . . 6 (𝜑 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
9796adantr 265 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
9894, 97mpd 13 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
9998eqcomd 2061 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) = (𝑇𝐵))
10029, 99oveq12d 5558 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) = (𝐵𝐹(𝑇𝐵)))
10140, 91, 1003eqtrd 2092 1 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wal 1257   = wceq 1259  wcel 1409  Vcvv 2574  cop 3406  cmpt 3846  suc csuc 4130  ωcom 4341   × cxp 4371  ccnv 4372  ran crn 4374  Fun wfun 4924   Fn wfn 4925  1-1-ontowf1o 4929  cfv 4930  (class class class)co 5540  cmpt2 5542  2nd c2nd 5794  freccfrec 6008  1c1 6948   + caddc 6950  cz 8302  cuz 8569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570
This theorem is referenced by:  iseqp1  9389
  Copyright terms: Public domain W3C validator